
Binoculars: Contention-Based Side-Channel
Attacks Exploiting the Page Walker

Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, Josep Torrellas

University of Illinois Tel Aviv University

USENIX Security’22

1

Microarchitectural Side Channel Attacks

Persistent State Change?

StatelessStateful

Direct Result of
Victim uOps?

Direct

Indirect

Cached-based attacks
(e.g., Flush+Reload,

Prime+Probe)

Port contention attacks
(e.g., PortSmash,
SMoTherSpectre)

Address translation-
based attacks (e.g.,

TLBleed, AnC) ?

Hard to exploit

Easily overlooked

Root Cause: shared hardware resource between the victim and the attacker

2

Microarchitectural Side Channel Attacks

Persistent State Change?

StatelessStateful

Direct Result of
Victim uOps?

Direct

Indirect

Cached-based attacks
(e.g., Flush+Reload,

Prime+Probe)

Port contention attacks
(e.g., PortSmash,
SMoTherSpectre)

Address translation-
based attacks (e.g.,

TLBleed, AnC)

Binoculars Attack
(This Work)

Root Cause: shared hardware resource between the victim and the attacker

3

The 1st Stateless-Indirect Channel: Binoculars

Highlights:
+ Easy to observe, up to 20K-cycle contention
(with a single dynamic instruction)
+ Leak a wide range of virtual address bits

Binoculars Attack
(This Work)

Hyper-Thread 1
(HT1)

Sibling
Hyper-Thread 2

(HT2)

Page Walk Normal Memory
Accesses

Contention*

*The contention is NOT due to cache footprint

4

Virtual Address Translation & Page Walk

L1 Cache

L2 Cache

L3 Cache

Main Memory

Page Walker

Core
Load VA1

Page Walk
TLB TLB Miss!

Page
Table

Page Walker Load

5

Virtual Address Translation & Page Walk (x64)
Virtual Page Number (VPN) – Bits 47:12

47 12 11 0

Virtual
Address

(VA)
𝑃𝐿! Index 𝑃𝐿" Index 𝑃𝐿# Index 𝑃𝐿$ Index

Offset – Bits 11:0

PGD*

L1 Cache

+CR3

Addr[11:3] = 𝑃𝐿! Index

PUD* PMD* PTE*+ + + +
PA

To TLB

*Each page-table entry is 8-byte long

𝑅𝐴! 𝑅𝐴" 𝑅𝐴# 𝑅𝐴$

6

Page Walk Simplified

47 12 11 0

Virtual
Address

(VA)
Offset𝑃𝐿! Index 𝑃𝐿" Index 𝑃𝐿# Index 𝑃𝐿$ Index

Three key takeaways:

L1 Cache

11 3 11 3 11 3 11 3

Page Walker Loads
L1 Cache

§ Page walker issues multiple (e.g., four) page walker loads
§ Address bits 11-3 of a page walker load is determined by its corresponding PL Index
§ Page walker loads go through the cache hierarchy and are subject to resource contention

7

The Binoculars Attack

47 12 11 0

Virtual
Address

(VA)
Offset𝑃𝐿! Index 𝑃𝐿" Index 𝑃𝐿# Index 𝑃𝐿$ Index

L1 Cache

𝑅𝐴!
11 3

𝑅𝐴"
11 3

𝑅𝐴#
11 3

𝑅𝐴$
11 3

HT1
(Reader)

Sibling
HT2

(Writer)

while (true) {
store 0 → 𝑾𝑨;

}

Repeated Writes

Strong resource contention
if 𝑊𝐴 is “4K-aliasing” with any 𝑅𝐴%
(i.e., share bits 11-0)

+ Up to 20K cycle delay!

Security Implications:
§ A high signal-to-noise channel
§ Address-dependent contention

+ Occurs regardless of what level in the cache
hierarchy the page walker loads read from

8

Primitive 1: Store→Load Channel

Intuition: the attacker triggers page walker loads
while the victim writes. If the attacker observes
strong contention:
Þ learn victim stores’ offset

Information Flow

𝑅𝐴!
11 3

𝑃𝐿! index

𝑅𝐴"
11 3

𝑃𝐿" index

𝑅𝐴#
11 3

𝑃𝐿# index

𝑅𝐴$
11 3

𝑃𝐿$ index

HT1 (Reader)
TLB-missing access to VA

HT2 (Writer)

Page Walker Loads
for translating VA

4K-Aliasing?

𝑊𝐴
Repeated Writes

36 9 3

Sub-cacheline resolution

9

Demo: Store→Load Channel

HT1 (Reader) HT2 (Writer)

0x528

Repeated Writes

Store Offset

4K-Aliasing!
Attacker access
latency spikes

0x000
𝑅𝐴$ Offset*

Page 0
0x008Page 1
0x010Page 2

…
0x528Page 165

…
0xff8Page 511

Attacker-probed latency
(100 measurements on a Skylake-X machine)

TLB-missing
access

*𝑅𝐴$ Offset = 𝑃𝐿$ Index × 8

10

Primitive 2: Load→Store Channel

Intuition: the attacker writes while the victim
performs a page walk. If the attacker observes
a victim slowdown:
Þlearn the set of 𝑃𝐿 indexes of the page that

the victim accesses

Information Flow
Demos can be found in Section 4.2

𝑅𝐴!
11 3

𝑃𝐿! index

𝑅𝐴"
11 3

𝑃𝐿" index

𝑅𝐴#
11 3

𝑃𝐿# index

𝑅𝐴$
11 3

𝑃𝐿$ index

HT2 (Writer)

𝑊𝐴
Repeated Writes

4K-Aliasing?

36 9 3

𝑃𝐿! 𝑃𝐿" 𝑃𝐿# 𝑃𝐿$

Can reconstruct the entire victim VPN

HT1 (Reader)
TLB-missing access to VA

Page Walker Loads
for translating VA

11

Root Cause of Strong Contention

Intel’s Patent*: issue page walker loads as “stuffed loads”, which bypass the
instruction scheduler to avoid any scheduling latency

More details in Section 5 and Appendix A
§ Detailed reverse engineering
§ Types of resource conflicts in L1 cache
§ …

Starvation!

HT1 (Reader) HT2 (Writer)

L1 Cache

𝑅𝐴%
11 3

𝑃𝐿% index
𝑊𝐴

Stuffed
Load

Normal
Store

*Glew et al., Method and apparatus for performing page table walks in a microprocessor capable of processing speculative instructions, 1997, US Patent 5,680,565

12

Attack Montgomery Ladder and ECDSA

Target: implementation uses Montgomery ladder to speed up the signing
(OpenSSL 1.0.1e)

ECDSA: a digital signature algorithm. One step during an ECDSA signing is
to compute the point 𝑘×𝐺, where 𝑘 is the nonce and 𝐺 is the base point

Knowing the nonce 𝑘 and the corresponding signature
Þ derive the private key used for signing

Challenge: the nonce 𝑘 changes at every victim run and never repeats
Þ requires a channel with high signal-to-noise ratio to extract 𝑘 with

a single victim execution

Goal: learn the nonce 𝑘

13

Attack Montgomery Ladder and ECDSA

BIGNUM *x1, *z1, *x2, *z2;
if (𝑘%) { // checks ith bit of k

Madd(x1, z1, x2, z2);
Mdouble(x2, z2);

} else {
Madd(x2, z2, x1, z1);
Mdouble(x1, z1);

}

A simplified Montgomery ladder iteration

st -> (x1, z1)
st -> (x2, z2)

st -> (x1, z1)
st -> (x2, z2)

J Data-oblivious to the
sequence of operations
and end-to-end timing

L Secret-dependent
reordering of stores

Detect it with the Store→Load Channel

st -> (x1, z1) st -> (x2, z2)

st -> (x2, z2) st -> (x1, z1)

14

Attack Montgomery Ladder and ECDSA

𝑘& = 1

Iteration
Boundary

Iteration
Boundary

Latency Trace of Probing Stores to 𝒙𝟐

Time

𝑘& = 0

15

Attack Montgomery Ladder and ECDSA
Oracle Montgomery ladder iteration boundaries

Signal Processing on Raw Traces:
1) Recover iteration boundaries
2) Predict 𝑘"

Evaluated on Skylake-X and Cascade Lake-X (100 traces):
+ Average 𝑘" prediction accuracy: 98.4%~98.5%
+ Median brute force attempts: ≈ 2#$

16

Conclusions

1. Easy to Observe 2. Wide VA Bits Coverage

https://github.com/zzrcxb/binoculars

3. Open Source

+ Up to 20K-cycle contention

+ High signal-to-noise ratio

36 9 3

Load→Store Store→Load

VA+ Extract nonce 𝑘 with a single
victim execution

Binoculars: the first stateless-indirect channel

https://github.com/zzrcxb/binoculars

