Binoculars: Contention-Based Side-Channel
Attacks Exploiting the Page Walker

Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, Josep Torrellas

University of lllinois Tel Aviv University

USENIX Security’22

I ILLINOIS @O@ H

TEL AVIV UNIVERSITY

Microarchitectural Side Channel Attacks

Root Cause: shared hardware resource between the victim and the attacker

Persistent State Change?
/{ Hard to exploit

Stateful Stateless
Cached-based attacks Port contention attacks
(e.g., Flush+Reload, (e.g., PortSmash,
Direct Prime+Probe) SMoTherSpectre)
Direct Result of
Victim uOps?
Address translation-
Indirect based attacks (e.g., ?
TLBleed, AnC) ’

Easily overlooked _/

Microarchitectural Side Channel Attacks

Root Cause: shared hardware resource between the victim and the attacker

Persistent State Change?

Stateful Stateless

Direct
Direct Result of
Victim uOps?
| Binoculars Attack
Indirect (This Work)

The 15t Stateless-Indirect Channel: Binoculars

Sibling
Hyper-Thread 1 Hyper-Thread 2
(HT1) Contention™ (HT2)
il -------- ->l <| -------- E
Binoculars Attack S Page Walk Normal Memory
(This Work) Accesses

*The contention is NOT due to cache footprint

Highlights:

+ Easy to observe, up to 20K-cycle contention
(with a single dynamic instruction)

+ Leak a wide range of virtual address bits

Virtual Address Translation & Page Walk

_gumm- Load VA1
cor @ﬁ

[L1 Cache]4—[Page Walker]—[TLB] TLB Miss!
lPage Walk

[L2 Cache]

{

[L3 Cache r]

[Main Memory Page]

Table

Virtual Address Translation & Page Walk (x64)

Virtual
Address
(VA)

Virtual Page Number (VPN) — Bits 47:12
A

Offset — Bits 11:0

CR3 4(:!: PGD*

Page Walker Load !_

Addr[11:3] = PL, Index

PL, Index PL; Index PL, Index PL, Index
47 12 11 0
PA

o fa- oo
— — — To TLB

| | I

_____ J_______I———____

v
[L1 Cache]

*Each page-table entry is 8-byte long

Page Walk Simplified

Virtual
Address PL, Index PL; Index PL, Index PL, Index Offset
(VA) 47 12 11 0
I L[] | L[] | L[] | L[]
11 3 11 3 11 3 11 3
RA, RA; RA, RA,
~ o ~ /7 -
-~ ~ ~ 7 - -
Page Walker Loads = <~ \ x « ~
[L1 Cache

Three key takeaways:

= Page walker issues multiple (e.g., four) page walker loads

= Address bits 11-3 of a page walker load is determined by its corresponding PL Index

= Page walker loads go through the cache hierarchy and are subject to resource contention

The Binoculars Attack

Virtual
HT1 Address PL, Index PL3 Index PL, Index PL; Index Offset
(Reader) (VA) 47 12 11 0
I L 11 | I I L 11 | | 1]
>N 11 3 11 3 11 3 11 3
r— RA, RA; RA, RA;
+ Up to 20K cycle delay! =~ o S o 7’ _ - _
+ Occurs regardless of what level in the cache ~ ~» .Strong. rt::-(sourc.e c-on,t’en-tlon
hierarchy the page walker loads read from L1 Cach] WA is "4k-aliasing™ with any R4,
Y pag acne (i.e., share bits 11-0)
.
Repeated Writes 7, . o
Sibling while (true) { _7 Security Implications:

HT?2 store 0 -
(Writer)

=

”

" A high signal-to-noise channel
=" Address-dependent contention

Primitive 1: Store—Load Channel

=2, 2 P~

HT1 (Reader)
TLB-missing access to VA

HT2 (Writer)

PL, index
11 3 Mo
PLs index N
RA; | [[] «--—| | WA
11 3 ,’; Repeated Writes
PL, index ~
RA, | 11~ / o
11 3 ;. 4K-Aliasing?
PL; index ,/
RA,C_—_T111* —
11 3

Information Flow
Page Walker Loads

for translating VA

Intuition: the attacker triggers page walker loads
while the victim writes. If the attacker observes

strong contention:
— |learn victim stores’ offset

¥
A

36

Sub-cacheline resolution

-~

HT1 (Reader)

=) Page 0
I Pagel
Vv Page?

=) Page 165

Page 511

Ox000

Ox008

0x010

Ox528

Oxff8

TLB-missing

access h

n
RA, Offset™ n

/1
>

Demo: Store—Load Channel

HT2 (Writer)

Store Offset
Ox528
/V

, Repeated Writes
4K-Aliasing!

Attacker access
latency spikes

*RA, Offset = PL; Index X 8

Attacker-probed latency
(100 measurements on a Skylake-X machine)

0x528

20K

=
Ul
AN

Avg. Latency (cycles)
o o
7F e

—— Latency
X Secret Offset

o
N

0x0

0x300

0x600 0x900 OxcO0 Oxf0O
Offset Under Probing

Primitive 2: Load—Store Channel

>3 &
s, P)~ A

HT1 (Reader) HT2 (Writer)
TLB-missing access to VA

PL, index
11 3 Mo
PLs index N
RA; | [[]«--»] WA
1L 2 ,’; Repeated Writes
PL, index ~
RA, | 11~ / o
11 3 ;. 4K-Aliasing?
PL; index ,/
RA,C_T—1T1* —
11 3 Information Flow

Page Walker Loads
for translating VA

Intuition: the attacker writes while the victim

performs a page walk. If the attacker observes

a victim slowdown:

—>learn the set of PL indexes of the page that
the victim accesses

Can reconstruct the entire victim VPN
A

4 \

PL, PL, PL, PIL,

/44 | |

36 9 3

Demos can be found in Section 4.2

10

Root Cause of Strong Contention

Intel’s Patent™: issue page walker loads as “stuffed loads”, which bypass the
instruction scheduler to avoid any scheduling latency

HT1 (Reader) HT2 (Writer)

Stuffed Normal
PL; index Load Store
13 =" oM
Starvation! [L1 Cache] i /\

More details in Section 5 and Appendix A
= Detailed reverse engineering
= Types of resource conflicts in L1 cache

*Glew et al., Method and apparatus for performing page table walks in a microprocessor capable of processing speculative instructions, 1997, US Patent 5,680,565 11

Attack Montgomery Ladder and ECDSA

ECDSA: a digital signature algorithm. One step during an ECDSA signing is
to compute the point kX G, where k is the nonce and G is the base point

Knowing the nonce k and the corresponding signature
—> derive the private key used for signing

Goal: learn the nonce k

Challenge: the nonce k changes at every victim run and never repeats
=> requires a channel with high signal-to-noise ratio to extract k with

a single victim execution

Target: implementation uses Montgomery ladder to speed up the signing
(OpenSSL 1.0.1e)

Attack Montgomery Ladder and ECDSA

A simplified Montgomery ladder iteration

BIGNUM *x1, *zl, *x2, *z2;
if (k;) 1 // checks ith bit of k
Madd(x1, z1, x2, z2); st —> (x1, zl)

Mdouble(x2, z2); st —> (x2, z2)
} else {
Madd(x2, z2, x1, z1); st —> (x2, z2)
Mdouble(x1, zl1); st —> (x1, z1)
¥
© Data-oblivious to the ® Secret-dependent
sequence of operations reordering of stores

and end-to-end timin
5 Detect it with the Store—Load Channel

13

Attack Montgomery Ladder and ECDSA

Latency Trace of Probing Stores to x,

S

' I

k=1 | |

' st —> (x1, z1) : st —> z2) |

| .

I I :

| i |

| | |

ki — O I ' :
| I

p st —> [(x2] z2) @ st —> (x1, zl)

. b2 | :
lteration | lteration
Boundary Time Boundary

ﬂ

14

Attack Montgomery Ladder and ECDSA

Oracle Montgomery ladder iteration boundaries

—— Latency / f \ \ X Value of k;

| | | : | | : T : | |
X X = 1
—_ I [l ; [[' [. [[
y 3507 I I3 T |
O | | | | | | : | 1| &
> | | | | | | : [1] s
L | | | | | | S n ©
> 300 | | N\ Al] |-
3 | | | B RS
© 250! 1 T I l
| | : | | : | | : | 1|
| L X ,= , % 1 :] & | & [0
2.64 2.66 2.68 2.70 2.72
Relative Timestamp 1e6
Signal Processing on Raw Traces: Evaluated on Skylake-X and Cascade Lake-X (100 traces):
1) Recover iteration boundaries + Average k; prediction accuracy: 98.4%~98.5%

2) Predict k; + Median brute force attempts: ~ 224
15

Conclusions

Binoculars: the first stateless-indirect channel

1. Easy to Observe 2. Wide VA Bits Coverage
+ Up to 20K-cycle contention e SieE Sl GEE
+ High signal-to-noise ratio r - ~v—"—
“J7,
+ Extract nonce kwithasingle AR/
36 9 3

victim execution

3. Open Source

https://github.com/zzrcxb/binoculars

https://github.com/zzrcxb/binoculars

