
Speculation Invariance (InvarSpec): Faster Safe 
Execution Through Program Analysis 

Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, 
Christopher Fletcher, Adam Morrison, Darko Marinov, Josep Torrellas 

 
Univ. of Illinois, Tel Aviv Univ. 

 
ziruiz6@illinois.edu 

International	Symposium	on	Microarchitecture	(MICRO)	October	2020	

1	



Speculative Execution Attacks 

Modern microprocessors are threatened by speculative execution side-channel attacks 

2	

if (x < array1_size) { // mispredicted 

   uint8 secret = array1[x];         // transient 

   uint8 y = array2[secret * 64];  // transient 

} 

Transient instruction: instruction bound to squash 

Speculative execution attack: uses transient instructions to leak secrets 



How Most Existing Hardware Defenses Work 

3	

o  Special hardware mechanism that protects instructions while they are speculative 
o  When the instruction reaches Visibility Point (VP), the protection is lifted 

VP: Point when the instruction can execute safely without protection 
       Depends on the threat model 

•  Spectre: when all older branches are resolved 
•  Comprehensive*: when the instruction cannot be squashed anymore 

* Yan et al., “InvisiSpec: Making Speculative Execution Invisible in the Cache” (MICRO’18) 

ld0 br ld1 

ROB 

HEAD 



Squashing and Transmitter Instructions 

4	

Access L1  
If miss in L1, delay ld until the VP 

ld x 

? 

Transmitter 

Squashing 

Squashing instruction: can cause squashes that may 
lead to security violations (defined by the threat model) 

Transmitter instruction: execution can create operand-
dependent microarchitectural resource usage that reveals a 
secret 

* Sakalis et al., “Efficient invisible speculative execution through selective delay and value prediction” (ISCA’19) 

br ld 

ROB 

HEAD 

Unresolved 

Example: Delay-on-Miss* (DOM) 



Observation: Hardware is Over-Protecting 

5	

br ld 

ROB 

HEAD 

Unresolved 

DOM still delays if miss in L1 

ld x 

? 

Transmitter 

Squashing 

ld x is neither data nor control 
dependent on the branch 

ld x will always read from the same 
value of x and commit 

No need to protect ld x 

Performance loss 



Why? Hardware Only Has the View of Dynamic Execution Path  

6	

br ld 

ROB 

HEAD 

Unresolved 

DOM still delays if miss in L1 

Wish: ld x can execute before turning non-speculative 
 

Need software support so the HW can identify this case 

ld x 

? 

Transmitter 

Squashing 



Insight: Speculation Invariance 

7	

Not Speculation Invariant 

ld x 

? 

Transmitter 

Squashing 

Intuition: A speculative instruction can become Speculation Invariant at 
some point before turning non-speculative 

Not Speculation Invariant Speculation Invariant 

x = 7  

? 

Transmitter 

Squashing 

ld x 

? Squashing 

ld x Transmitter 

Control Dependence (CD) 

Data 
Dependence 
(DD) 



Insight: Speculation Invariance 

8	

Data 
Dependence 

(DD) 
ld x 

x = ld y 

Transmitter 

Squashing 

Not Speculation Invariant 

ld x 

z = ld y 

Transmitter 

Squashing 

Speculation Invariant 

Consider loads as squashing instructions 
(due to exceptions and memory consistency violations) 



Contribution 

o  InvarSpec: A software-hardware framework that  
o  Identifies when a speculative instruction becomes Speculation Invariant 
o  Allows the execution of the speculative instruction without protection 

9	

o  Components of InvarSpec: 
1)  Static analysis pass of the program 
2)  Core microarchitecture 

SW Hints (Safe Set) 

Secure Scheme 

InvarSpec 
uarch 

InvarSpec analysis 

Program 

Program 



Contribution 

o  InvarSpec: A software-hardware framework that  
o  Identifies when a speculative instruction becomes Speculation Invariant 
o  Allows the execution of the speculative instruction without protection 

10	

o  Reduction in the execution overhead of existing hardware defense schemes 
o  Fence while speculative: 195.3% ⇒ 108.2% 
o  Delay on Miss: 39.5% ⇒ 24.4% 
o  InvisiSpec: 15.4% ⇒ 10.9% 

o  Components of InvarSpec: 
1)  Static analysis pass of the program 
2)  Core microarchitecture 



Speculation Invariance (SI) 

11	

A speculative instruction i becomes Speculation Invariant (SI) when 
    (1) whether i will execute, and 
    (2) the values of i’s source operands 
do not depend on speculative state 

Proposal: Lift the protection mechanism as soon as a speculative instruction reaches its 
ESP and execute without protection 

We say that i reaches its Execution-Safe Point (ESP) when: 
    (1) it is speculation invariant, and 
    (2) its source operands are ready 

Intuition: The instruction is guaranteed to eventually commit using the exact same 
operands, despite any future squashes 

ld x 

? 

ld x 

z = ld y 



What We Gain 

12	

Time 

Transmitter is ready to be 
speculatively executed Transmitter retires 

Transmitter 
reaches VP 

Protection 
engaged 

Transmitter  
reaches ESP 

Protection 
lifted 



What We Gain 

13	

Time 

Transmitter is ready to be 
speculatively executed Transmitter retires 

Protection 
engaged 

Protection 
lifted 

Transmitter 
reaches VP 

Transmitter  
reaches ESP 

Executes earlier: improves 
performance 



14	

Safe Set (SS) for an instruction i: set of older 
squashing instructions that cannot prevent i from 
becoming Speculation Invariant. 
 
When is the HW sure that instruction i has become 
Speculation Invariant? 

Safe Set (SS) of an Instruction 

ld x 

z = ld y 

𝑆𝑆(𝑙𝑑 𝑥)={𝑙𝑑 𝑦} 

? 

ld x 

𝑆𝑆(𝑙𝑑 𝑥)={𝑏𝑟𝑎𝑛𝑐ℎ} 

o  If HW does not know i's SS: all of its older squashing 
instructions have produced their final results 

o  If HW knows i's SS: all of its older squashing 
instructions that are not in SS(i) have produced their 
final results 



InvarSpec's Threat Model 

InvarSpec inherits the transmitters and the threat model from the hardware defense 
scheme that it augments 

15	

Rule out attacks based on the exact timing of when speculative instructions execute 
Why? Because the underlying hardware schemes that InvarSpec augments do not consider them 

In the paper: 
o  Squashing instructions: branches & loads 
o  Transmitter instructions: loads 



InvarSpec Framework 

o  Software: analysis pass that generates SS for the instructions 
o  Baseline: Populates SS with instructions that are safe for all the execution paths 
o  Enhanced: Also places in SS some instructions not safe for some execution paths 

16	

o  Hardware: microarchitecture in the processor core  
o  Brings SS of the instruction being executed to the pipeline 
o  Computes when the instruction becomes Speculation Invariant and can execute  



InvarSpec Analysis: Baseline 

17	

Instruction Dependence Graph (IDG) of instruction i:  a graph that contains all instructions within 
the same function that may affect whether i executes or the values of i’s source operands. 

b = ld c; // squashing 
if (a) {  // squashing 
  x = ld y; // squashing   
} 
ld x;       // transmitter 

ld x 

𝑰𝑫𝑮(𝒍𝒅𝒙) 

x=ld y 

if(a) 

CD 

DD 

𝑆𝑆(𝑙𝑑 𝑥)={𝑙𝑑 𝑐} 



InvarSpec Analysis: Enhanced 

18	

Benefit: Better performance while still secure 

More details in the paper 

Insight: Some dependencies only exist on certain execution paths to i 

Technique: Remove some of the edges from the IDG(i) and place more 
squashing instructions in the SS(i) 



Hardware Support: Storing SS 

19	

Store SSs in SS pages 
○  Fixed VA offset between code and SS pages 
○  Fixed offset between instruction and its SS 

ld0 

SS(ld0) 

Code 
page 

SS 
page 

𝚫

VA 



Hardware Support: Bringing SS on Demand 

20	

SS Cache 

SS Entry 

+ 𝚫

To pipeline 
Hit Miss 

To TLB 

VA of the 
instruction 

Core has a small SS Cache with recently-used SSs 
When instruction is decoded, the SS Cache is checked 
o  If Hit: provide the SS 
o  If Miss: request it when safe 



Hardware Support: Computing Speculation Invariance 

21	

PC 

SS Bitmask 

SI Final 

Head 

ROB 

Inflight Buffer (IFB) 

IFB records all the inflight transmitters and 
squashing instructions 

PC of the 
instruction 

Bitmask that 
contains SS 
information 

Is it 
Speculation 
Invariant? 

Has it 
produced 
final results? 



Hardware Support: Computing Speculation Invariance 

22	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

0x110 

SS Bitmask 

SI Final 

Head 

Inflight Buffer (IFB) 

= = = = 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

Incoming transmitter i  



Hardware Support: Computing Speculation Invariance 

23	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

0x110 

SS Bitmask 

SI Final 

Head 

Inflight Buffer (IFB) 

= = = = 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

0 1 0 1 Incoming transmitter i  



Hardware Support: Computing Speculation Invariance 

24	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

0x110 

1010 

SI Final 

Head 

Inflight Buffer (IFB) 

= = = = 
0 1 0 1 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

Incoming transmitter i  



Hardware Support: Computing Speculation Invariance 

25	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

0x110 

1010 

SI Final 

Head 

Inflight Buffer (IFB) 

= = = = 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

Transmitter i  



Hardware Support: Computing Speculation Invariance 

26	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

Head 

Inflight Buffer (IFB) 

0 1 0 1 

0x110 

1010 

SI Final 

= = = = 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

Transmitter i  



Hardware Support: Computing Speculation Invariance 

27	

0x12F 

SS Bitmask 

SI Final 

0x108 

SS Bitmask 

SI Final 

0x96 

SS Bitmask 

SI Final 

0x90 

SS Bitmask 

SI Final 

Head 

Inflight Buffer (IFB) 

0 1 0 1 

0x110 

1010 

SI Final 

= = = = 

PCs from SS cache: SS(i) = {0x12F, 0x96} 

Transmitter i  



 Evaluation: Execution Overhead (SPEC 2017) 

28	

195.3
% 169.5

% 
108.2

% 

Vanilla SS SS++ 

Fence 

Place fences before speculative loads 

15.4% 14.9% 

10.9% 

Vanilla SS SS++ 

InvisiSpec 

Invisibly issue speculative loads 
and follow up with a second access 

39.5% 38.4% 

24.4% 

Vanilla SS SS++ 

Delay-On-Miss (DOM) 

Allow speculative loads to access 
only L1; stall if miss on L1 

Vanilla: Defense scheme without InvarSpec 
SS: Defense scheme with InvarSpec Baseline 
SS++: Defense scheme with InvarSpec Enhanced 

InvarSpec delivers substantial reductions in the execution overhead of defense schemes 

Average execution overhead of InvarSpec over conventional (unsafe) core 



Conclusion: InvarSpec 

29	

o  Defense scheme against speculative execution attacks that combines 
cooperative compiler and hardware mechanisms 

o  Can augment many existing hardware-only defense schemes 

o  Substantially reduces the overhead of defense schemes: 
o  Fence: 195.3% ⇒ 108.2% 
o  DOM: 39.5% ⇒ 24.4% 
o  InvisiSpec: 15.4% ⇒ 10.9% 

Available at: http://iacoma.cs.uiuc.edu/iacoma-papers/micro20_1.pdf 



30	

Speculation Invariance (InvarSpec): Faster Safe 
Execution Through Program Analysis 

Zirui Neil Zhao, Houxiang Ji, Mengjia Yan, Jiyong Yu, 
Christopher Fletcher, Adam Morrison, Darko Marinov, Josep Torrellas 

 
Univ. of Illinois, Tel Aviv Univ. 

 
ziruiz6@illinois.edu 

International	Symposium	on	Microarchitecture	(MICRO)	October	2020	


