
Everywhere All at Once: Co-Location Attacks
on Public Cloud FaaS

Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, Josep Torrellas

University of Illinois Tel Aviv University

To appear at ASPLOS’24

*Will be on the job market this fall

Microarchitectural Side-Channel Attacks

1

Last-Level Cache (LLC)

Main Memory

LLC Prime+Probe Flush+Reload

DRAMA

Interconnect

Mesh Around
Lord of the Ring(s)

TLBleed

PortSmash, SMoTherSpectre

L1 Prime+Probe, Binoculars

Side channels exploit shared resources between attackers and victims

… DIVADD

L1 Caches

L2 Cache

T
L
B

Physical Core

DIVADD

L1 Caches

L2 Cache

T
L
B

…

Physical Core

Cloud Computing: A Prime Target for Side Channels

2

Cloud Vendor

Cloud Users

Intensive Resource Sharing

Emerging Cloud Computing Has Even More Sharing

3

Cloud UsersContainers

Example: Function-as-a-Service (FaaS)

Steps of Side-Channel Attacks in the Wild

4

Victim Attacker

Step 2: Extraction

Victim Attacker

Step 1: Co-Location

Overlooked

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/ (under a CC Attribution-NonCommercial 2.5 License)

https://xkcd.com/2176
https://xkcd.com/1808/

Goal of This Work

5

Goal: study how to achieve co-location
in modern public clouds

Target: Run

A production Function-as-a-Service
platform from Google Cloud

Victim Attacker

Step 1: Co-Location

Background: Function-as-a-Service (FaaS)

6

Monolithic App

Service 1

Service 2

Service 3

Service 4

Background: Function-as-a-Service (FaaS)

7

Dev Team

Web App

Libraries

Usually, a small program
with a single functionality

Container
Image

Region: us-east
vCPU: 2
Memory: 1GiB

Configurations

Service

Fully managed by the cloud platform

Background: Request Handling and Auto-Scaling

8

Service
Incoming
Request

Host 1 Host 2 Host 3

The instance launching process is fully managed by the cloud platform

Background: Request Handling and Auto-Scaling

9

Service
Incoming
Requests

Host 1 Host 2 Host 3

Cloud platform launches more instances to handle traffic increases

Fog of War: Container Instance Placement

10

…

…

Data Center

Attacker
Cloud

Vendor

Cloud vendors use unknown
instance placement policies

⇒ Naively launching instances
often has zero co-location

Main Contributions & Highlighted Results

11

1. Accurate
Host Fingerprinting

Co-locate?

2. Inexpensive
Co-Location Test

?

3. Exploitable
Placement Behavior

100% probability of co-locating
with at least one victim instance

Co-locate with 61%-100% of victim
instances in three major data centers

Threat Model

12

• An unprivileged attacker

• After co-location is achieved, the attacker can invoke the
victim and exfiltrate information

• The attacker can execute arbitrary program inside the container

Securing the Cloud: Sandboxing Technologies

13

Linux Containers & gVisor

User Application

gVisor

Host Kernel

System Calls

Limited System Calls

Unprivileged

Privileged

Attacker: CPU Model?
gVisor: unknown

Attacker: Boot log?
gVisor:
 Starting gVisor...
 Granting licence to kill(2)...
 Recruiting cron-ies...
 Creating process schedule...
 Checking naughty and nice process list...
 Gathering forks...
 Rewriting operating system in Javascript...
 Searching for needles in stacks...
 …

gVisor Hides Sensitive Host Information

Non-virtualized, lightweight
Default environment for web services

Hardware

Untrusted

Physical Host Fingerprinting: Talk with the CPU

14

Who’s my
host?

Don’t ask me!

CPU

cpuid

Happy to help!

Model: Intel Xeon Platinum
8173M CPU @ 2.00GHz

L1D: 32kB, 8-way
L1I: 32kB, 8-way
L2: 1MB, 16-way
LLC: …

Insight: attacker can bypass software countermeasures by directly interacting
with the shared underlying hardware

My Little Timestamp Counter (TSC)

15

A high-resolution timer (frequency ~ a few GHz)

The host’s TSC is accessible through an
unprivileged x86 instruction rdtsc

User Application

Host Kernel

gVisor

Hardware

Sandboxed

Deriving Host’s Boot Time Using TSC

16

Real-world
timeHost boots at an unknown 𝑇𝑏𝑜𝑜𝑡

𝑡𝑠𝑐0 = 0

Read TSC at 𝑇 = 2: 22pm

𝑡𝑠𝑐 = 120𝐵

Uptime: 𝑡𝑠𝑐/𝑓𝑟𝑒𝑞 = 60𝑠 rdtsc

⇒ 𝑇𝑏𝑜𝑜𝑡 = 𝑇 − 𝑢𝑝𝑡𝑖𝑚𝑒 = 2:21pm

Host Fingerprint: 𝔽 = 𝑇𝑏𝑜𝑜𝑡

Reset to 0 when
the host boots

Increments at a fixed
frequency (e.g., 2GHz)

Hypothesis: the boot time is likely unique for each physical host

Verifying Co-Location

17

Contention!
⇒ Co-Located

No Contention
⇒ Not Co-Located

Potentially
Shared Resource

Scalability Issue: it requires 𝑂(𝑁2) pairwise tests to verify N containers

E.g., caches, random
number generator*

Instance Pair

* Evtyushkin et al. Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations

Go Beyond Pairwise Testing – Batch Testing

18

A1, A2, A3 do not co-locate with any other instance
(i.e., they are single instances)

Contention? ✗ ✗ ✗ ✓ ✓

A1 A2 A3 A4 A5

A4 and A5 are co-located

Go Beyond Pairwise Testing – Batch Testing

19

A1 A2 A3 A4 A5

Contention? ✗ ✗ ✓ ✓ ✓

A3, A4, A5 are co-located

Go Beyond Pairwise Testing – Batch Testing

20

A2, A3, A4, A5 are co-located? Not sure!

Co-located

A1 A2 A3 A4 A5

Contention? ✗ ✓ ✓ ✓ ✓

Go Beyond Pairwise Testing – Batch Testing

21

A2, A3, A4, A5 are co-located? Not sure!

A1 A2 A3 A4 A5

Contention? ✗ ✓ ✓ ✓ ✓

Co-locatedCo-located

Batch Testing Strategies

22

Truly not co-located

Batch test all instances at once

Truly co-located

Batch test 3 instances at once

If fingerprints are accurate, they can provide hints on which instances are likely co-located

Fingerprint-Assisted Co-Location Verification

23

Co-located Co-located Co-located Co-located

Instances

Fingerprint-Assisted Co-Location Verification

24

Instances

𝔽1Fingerprints 𝔽1 𝔽1 𝔽2 𝔽2 𝔽3 𝔽3 𝔽3𝔽2

False negative

Fingerprint-Assisted Co-Location Verification

25

Instances

𝔽1Fingerprints 𝔽1 𝔽1 𝔽2 𝔽2 𝔽3 𝔽3 𝔽3𝔽2

False positives

Fingerprint-Assisted Co-Location Verification

26

𝔽1

𝔽2

𝔽3

{ , , }
✓ ✓ ✓

Fingerprint-Assisted Co-Location Verification

27

𝔽1

𝔽2

𝔽3

{ , , }

✗✓ ✓

{ , } { }

False positive

Fingerprint-Assisted Co-Location Verification

28

𝔽1

𝔽2

𝔽3

{ , , }

{ , } { }
✗✓ ✓

{ , } { }

False positive

Fingerprint-Assisted Co-Location Verification

29

𝔽1

𝔽2

𝔽3

{ , , }

{ , } { }

{ , } { }

All false positives are identified, proceed to find false negatives

Fingerprint-Assisted Co-Location Verification

30

𝔽1

𝔽2

𝔽3

{ , , }

{ , } { }

{ , } { }

✗ ✓ ✓✗ ✗

{ , , }

{ , }

{ , }

{ , }

Fingerprint-Assisted Co-Location Verification

31

𝔽1

𝔽2

𝔽3

{ , , }

{ , } { }

{ , } { }

{ , , }

{ , }

{ , }

{ , }

Fingerprint-Assisted Co-Location Verification

32

𝔽1

𝔽2

𝔽3

{ , , }

{ , } { }

{ , } { }

{ , , }

{ , }

{ , }

{ , }

4 batch tests instead of 9 × 8/2 = 36 pairwise tests

More discussion in the paper

Host Fingerprints are Highly Accurate

33

• Gather fingerprints from 800 container instances

• Experiment is repeated 15 times in three data centers

For each pair of container instances
• False positive (FP): same fingerprints but not co-located

• False negative (FN): different fingerprints but co-located

Average false negative rate: 0.00%
Average false positive rate: 0.02%

14 out of 15 measurements generate perfect fingerprints (no FP nor FN)

Understanding Instance Placement Policy

34

= Physical Host

Base Hosts

35

= Physical Host

Base Hosts

Possible cause: affinity scheduling to reduce communication overhead

Cloud Run prefers a specific set of hosts for instances owned by the same account

Different Accounts Have Different Base Hosts

36

= Physical Host

Different accounts (usually) have different base hosts

Double-edged sword!

Load Balancing

37

= Physical Host

High container usage can trick Cloud Run to spread instances across many hosts

☺ Allow attackers to go beyond their base hosts

Co-Location with Victims

38

VictimAttacker

Account 1

× 4,800 × 100

Exploit the
load-balancing

behavior

Account 2 &
Account 3

Victim Coverage: percentage of victim instances that are co-located with the attacker

Co-Location with Victims

39

Average Victim Instance Coverage (3 repetitions in each region)

Attack Cost: ~24 USD ~23 USD ~27 USD

97.7% 99.7%

0%

20%

40%

60%

80%

100%

Account 2 Account 3

us-east1

61.3%

90.0%

0%

20%

40%

60%

80%

100%

Account 2 Account 3

us-central1

100.0% 100.0%

0%

20%

40%

60%

80%

100%

Account 2 Account 3

us-west1

Attacker resided on
~900 hosts

Conclusions

40

1. Accurate
Host Fingerprinting

Co-locate?

2. Inexpensive
Co-Location Test

?

3. Exploitable
Placement Behavior

100% probability of co-locating
with at least one victim instance

Co-locate with 61%-100% of victim
instances in three major data centers

	Title
	Slide 0: Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS

	Introduction
	Slide 1: Microarchitectural Side-Channel Attacks
	Slide 2: Cloud Computing: A Prime Target for Side Channels
	Slide 3: Emerging Cloud Computing Has Even More Sharing
	Slide 4: Steps of Side-Channel Attacks in the Wild
	Slide 5: Goal of This Work
	Slide 6: Background: Function-as-a-Service (FaaS)
	Slide 7: Background: Function-as-a-Service (FaaS)
	Slide 8: Background: Request Handling and Auto-Scaling
	Slide 9: Background: Request Handling and Auto-Scaling
	Slide 10: Fog of War: Container Instance Placement
	Slide 11: Main Contributions & Highlighted Results
	Slide 12: Threat Model
	Slide 13: Securing the Cloud: Sandboxing Technologies
	Slide 14: Physical Host Fingerprinting: Talk with the CPU
	Slide 15: My Little Timestamp Counter (TSC)
	Slide 16: Deriving Host’s Boot Time Using TSC
	Slide 17: Verifying Co-Location
	Slide 18: Go Beyond Pairwise Testing – Batch Testing
	Slide 19: Go Beyond Pairwise Testing – Batch Testing
	Slide 20: Go Beyond Pairwise Testing – Batch Testing
	Slide 21: Go Beyond Pairwise Testing – Batch Testing
	Slide 22: Batch Testing Strategies
	Slide 23: Fingerprint-Assisted Co-Location Verification
	Slide 24: Fingerprint-Assisted Co-Location Verification
	Slide 25: Fingerprint-Assisted Co-Location Verification
	Slide 26: Fingerprint-Assisted Co-Location Verification
	Slide 27: Fingerprint-Assisted Co-Location Verification
	Slide 28: Fingerprint-Assisted Co-Location Verification
	Slide 29: Fingerprint-Assisted Co-Location Verification
	Slide 30: Fingerprint-Assisted Co-Location Verification
	Slide 31: Fingerprint-Assisted Co-Location Verification
	Slide 32: Fingerprint-Assisted Co-Location Verification
	Slide 33: Host Fingerprints are Highly Accurate
	Slide 34: Understanding Instance Placement Policy
	Slide 35: Base Hosts
	Slide 36: Different Accounts Have Different Base Hosts
	Slide 37: Load Balancing
	Slide 38: Co-Location with Victims
	Slide 39: Co-Location with Victims
	Slide 40: Conclusions

