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Microarchitectural Side-Channel Attacks
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Side channels exploit shared resources between attackers and victims
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Cloud Computing: A Prime Target for Side Channels
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Cloud Vendor

Cloud Users

Intensive Resource Sharing



Emerging Cloud Computing Has Even More Sharing
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Cloud UsersContainers

Example: Function-as-a-Service (FaaS)



Steps of Side-Channel Attacks in the Wild
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Victim Attacker

Step 2: Extraction

Victim Attacker

Step 1: Co-Location

Overlooked

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/ (under a CC Attribution-NonCommercial 2.5 License)

https://xkcd.com/2176
https://xkcd.com/1808/


Goal of This Work

5

Goal: study how to achieve co-location 
in modern public clouds

Target: Run

A production Function-as-a-Service 
platform from Google Cloud

Victim Attacker

Step 1: Co-Location



Background: Function-as-a-Service (FaaS)
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Background: Function-as-a-Service (FaaS)
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Dev Team

Web App

Libraries

Usually, a small program 
with a single functionality

Container 
Image

Region: us-east
vCPU: 2
Memory: 1GiB

Configurations

Service

Fully managed by the cloud platform



Background: Request Handling and Auto-Scaling
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Service
Incoming
Request

Host 1 Host 2 Host 3

The instance launching process is fully managed by the cloud platform



Background: Request Handling and Auto-Scaling
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Service
Incoming
Requests

Host 1 Host 2 Host 3

Cloud platform launches more instances to handle traffic increases



Fog of War: Container Instance Placement
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…

…

Data Center

Attacker
Cloud 

Vendor

Cloud vendors use unknown 
instance placement policies

⇒ Naively launching instances 
often has zero co-location



Main Contributions & Highlighted Results
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1. Accurate
Host Fingerprinting

Co-locate?

2. Inexpensive
Co-Location Test

?

3. Exploitable 
Placement Behavior

100% probability of co-locating 
with at least one victim instance

Co-locate with 61%-100% of victim 
instances in three major data centers



Threat Model
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• An unprivileged attacker

• After co-location is achieved, the attacker can invoke the 
victim and exfiltrate information

• The attacker can execute arbitrary program inside the container



Securing the Cloud: Sandboxing Technologies
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Linux Containers & gVisor

User Application

gVisor

Host Kernel

System Calls

Limited System Calls

Unprivileged

Privileged

Attacker: CPU Model?
gVisor: unknown

Attacker: Boot log?
gVisor:
  Starting gVisor...
  Granting licence to kill(2)...
  Recruiting cron-ies...
  Creating process schedule...
  Checking naughty and nice process list...
  Gathering forks...
  Rewriting operating system in Javascript...
  Searching for needles in stacks...
  …

gVisor Hides Sensitive Host Information

Non-virtualized, lightweight
Default environment for web services

Hardware

Untrusted



Physical Host Fingerprinting: Talk with the CPU
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Who’s my 
host?

Don’t ask me!

CPU

cpuid

Happy to help!

Model: Intel Xeon Platinum 
8173M CPU @ 2.00GHz

L1D: 32kB, 8-way
L1I: 32kB, 8-way
L2: 1MB, 16-way
LLC: …

Insight: attacker can bypass software countermeasures by directly interacting 
with the shared underlying hardware



My Little Timestamp Counter (TSC)
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A high-resolution timer (frequency ~ a few GHz)

The host’s TSC is accessible through an 
unprivileged x86 instruction rdtsc

User Application

Host Kernel

gVisor

Hardware

Sandboxed



Deriving Host’s Boot Time Using TSC
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Real-world 
timeHost boots at an unknown 𝑇𝑏𝑜𝑜𝑡

𝑡𝑠𝑐0 = 0

Read TSC at 𝑇 = 2: 22pm

𝑡𝑠𝑐 = 120𝐵

Uptime: 𝑡𝑠𝑐/𝑓𝑟𝑒𝑞 = 60𝑠 rdtsc

⇒ 𝑇𝑏𝑜𝑜𝑡 = 𝑇 − 𝑢𝑝𝑡𝑖𝑚𝑒 = 2:21pm

Host Fingerprint: 𝔽 = 𝑇𝑏𝑜𝑜𝑡

Reset to 0 when 
the host boots

Increments at a fixed 
frequency (e.g., 2GHz)

Hypothesis: the boot time is likely unique for each physical host



Verifying Co-Location
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Contention!
⇒ Co-Located

No Contention
⇒ Not Co-Located

Potentially 
Shared Resource

Scalability Issue: it requires 𝑂(𝑁2) pairwise tests to verify N containers

E.g., caches, random 
number generator*

Instance Pair

* Evtyushkin et al. Covert Channels through Random Number Generator: Mechanisms, Capacity Estimation and Mitigations



Go Beyond Pairwise Testing – Batch Testing
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A1, A2, A3 do not co-locate with any other instance
(i.e., they are single instances)

Contention? ✗ ✗ ✗ ✓ ✓

A1 A2 A3 A4 A5

A4 and A5 are co-located



Go Beyond Pairwise Testing – Batch Testing
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A1 A2 A3 A4 A5

Contention? ✗ ✗ ✓ ✓ ✓

A3, A4, A5 are co-located



Go Beyond Pairwise Testing – Batch Testing
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A2, A3, A4, A5 are co-located? Not sure!

Co-located

A1 A2 A3 A4 A5

Contention? ✗ ✓ ✓ ✓ ✓



Go Beyond Pairwise Testing – Batch Testing
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A2, A3, A4, A5 are co-located? Not sure!

A1 A2 A3 A4 A5

Contention? ✗ ✓ ✓ ✓ ✓

Co-locatedCo-located



Batch Testing Strategies
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Truly not co-located

Batch test all instances at once

Truly co-located

Batch test 3 instances at once

If fingerprints are accurate, they can provide hints on which instances are likely co-located



Fingerprint-Assisted Co-Location Verification
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Co-located Co-located Co-located Co-located

Instances



Fingerprint-Assisted Co-Location Verification
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Instances

𝔽1Fingerprints 𝔽1 𝔽1 𝔽2 𝔽2 𝔽3 𝔽3 𝔽3𝔽2

False negative



Fingerprint-Assisted Co-Location Verification
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Instances

𝔽1Fingerprints 𝔽1 𝔽1 𝔽2 𝔽2 𝔽3 𝔽3 𝔽3𝔽2

False positives



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }
✓ ✓ ✓



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

✗✓ ✓

{     ,       } {     }

False positive



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

{     ,       } {     }
✗✓ ✓

{     ,       } {     }

False positive



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

{     ,       } {     }

{     ,       } {     }

All false positives are identified, proceed to find false negatives



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

{     ,       } {     }

{     ,       } {     }

✗ ✓ ✓✗ ✗

{     ,       ,       }
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{     ,       }



Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

{     ,       } {     }

{     ,       } {     }

{     ,       ,       }

{     ,       }

{     ,       }
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Fingerprint-Assisted Co-Location Verification
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𝔽1

𝔽2

𝔽3

{     ,       ,       }

{     ,       } {     }

{     ,       } {     }

{     ,       ,       }

{     ,       }

{     ,       }

{     ,       }

4 batch tests instead of 9 × 8/2 = 36 pairwise tests

More discussion in the paper



Host Fingerprints are Highly Accurate
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• Gather fingerprints from 800 container instances

• Experiment is repeated 15 times in three data centers

For each pair of container instances
• False positive (FP): same fingerprints but not co-located

• False negative (FN): different fingerprints but co-located

Average false negative rate: 0.00%
Average false positive rate: 0.02%

14 out of 15 measurements generate perfect fingerprints (no FP nor FN)



Understanding Instance Placement Policy

34

= Physical Host



Base Hosts
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= Physical Host

Base Hosts

Possible cause: affinity scheduling to reduce communication overhead

Cloud Run prefers a specific set of hosts for instances owned by the same account



Different Accounts Have Different Base Hosts
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= Physical Host

Different accounts (usually) have different base hosts

Double-edged sword!



Load Balancing
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= Physical Host

High container usage can trick Cloud Run to spread instances across many hosts

☺ Allow attackers to go beyond their base hosts



Co-Location with Victims
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VictimAttacker

Account 1

× 4,800 × 100

Exploit the 
load-balancing 

behavior

Account 2 &
Account 3

Victim Coverage: percentage of victim instances that are co-located with the attacker



Co-Location with Victims
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Average Victim Instance Coverage (3 repetitions in each region)

Attack Cost: ~24 USD ~23 USD ~27 USD

97.7% 99.7%
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us-west1

Attacker resided on 
~900 hosts



Conclusions
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1. Accurate
Host Fingerprinting

Co-locate?

2. Inexpensive
Co-Location Test

?

3. Exploitable 
Placement Behavior

100% probability of co-locating 
with at least one victim instance

Co-locate with 61%-100% of victim 
instances in three major data centers
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