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Static Resource Partitioning as a Defense
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Dynamic Partitioning and Its Leakage
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Dynamic Partitioning and Its Leakage

Shared Hardware Resources

AttackerVictim

5

No Peeking!



Dynamic Partitioning and Its Leakage
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Dynamic Partitioning and Its Leakage
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☺ High Performance

 Some Information Leakage
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Quantify the Leakage
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Quantify the Leakage
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Quantify the Leakage
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2. Stop resizing once the leakage budget is reached
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Less Leakage, More Performance
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Less Leakage, More Performance

Lower leakage rate ⇒ More resizings under the budget ⇒ Better performance
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Untangle: Contributions

Lower leakage rate ⇒ More resizings under the budget ⇒ Better performance

Our Main Contributions:
▪ A general framework to tightly quantify the leakage
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☺ Start fresh with leakage quantification in mind

Victim

Leakage

▪ Designs that reduce the leakage



Threat Model

▪ A leakage budget

▪ No resizing after reaching 
the budget

Idealized
Attacker

▪ Directly observe the victim’s resizing

▪ Observations are instantaneous and 
accurate
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Generalized Dynamic Partitioning
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Component 1: Utilization Metric

Example: Dynamic last-level cache (LLC) partitioning

Reflects a program’s resource demand and guides resizing

Shared LLC

Core 0

Private 
Caches

Core 1

Private 
Caches

Core N

Private 
Caches

… Metric:
LLC miss rate



Generalized Dynamic Partitioning
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Component 2: Action Heuristic

Decides what resizing action to perform based on the utilization

LLC miss rate

High
Expand the partition

Maintain the partition

Shrink the partition



TimeFixed-progress:

TimeFixed-time:

Generalized Dynamic Partitioning
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Component 3: Resizing Schedule

Determines when to check the utilization and perform the action

Resizing 1 Resizing 2 Resizing 3

T cycles T cycles

Resizing 1 Resizing 2 Resizing 3

N retired 
instructions

N retired 
instructions

Common choice



Split the Leakage
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Action Leakage Scheduling Leakage

Utilization Metric

Action Heuristic & 
Resizing Actions

Resizing Schedule

Attacker observable



Action Leakage

Victim
Partition 
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Time

Shrink?

Maintain?

Expand?

Action Leakage: what resizing action to perform
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if (secret > 0) {
  // traverse a large array
} else if (secret < 0) {
  // traverse a small array
} else {
  // do nothing
}

Secret-dependent demand

⇒ check resizing, expand?



Scheduling Leakage

Expand at 𝑡2?Expand at 𝑡1?

𝑡1 𝑡2

Scheduling Leakage: when resizing action occurs

if (secret > 0) {
  sleep(1);
}
// traverse a large array

Time

Victim
Partition 

Size

Secret-dependent timing

Check out our paper for more details on how we formally split the leakage
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⇒ check resizing, expand!



“What” and “When” are Entangled
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When
𝑡1? 𝑡2? 𝑡3?

𝑡4? 𝑡5?
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𝑡8? 𝑡9?



“What” and “When” are Entangled
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When
𝑡1? 𝑡2? 𝑡3?

𝑡4? 𝑡5?

Resizing 2

What

Expand?
Maintain?

Shrink?

When
𝑡6? 𝑡7? 𝑡10?

𝑡8? 𝑡9?

Resizing 3

What

Expand?
Maintain?

Shrink?

When
𝑡11? 𝑡15? 𝑡13?

𝑡12? 𝑡14?

…

…

Hard to analyze!



Untangle It!
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Secret-dependent 
demand

Secret-dependent 
program timing

Action 
leakage

Scheduling 
leakage

Root 
Causes

Observable
Leakage

Measure and reduce it without 
analyzing program timing

①

② ③

④

Eliminate action leakage

☺ Static Program Analysis  Impractical to analyze



Principle 1: Timing-Independent Metric
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The value of the metric cannot depend on the actual instruction timing

Example of what is not a timing-independent metric for cache:

Number of cache hits in the past T cycles

Cache hits are timing-dependent 
on out-of-order processors

Profiling window is timing-dependent



Principle 1: Timing-Independent Metric
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Turning it to a timing-independent metric:

Memory footprint of the past N retired instructions

Same value regardless of cache hits or not Same profiling window regardless 
how fast the program runs

The value of the metric cannot depend on the actual instruction timing



Principle 2: Progress-Based Schedule
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Tie resizing points to when the program has made a certain progress 
(e.g., every 1B retired instructions)

Example of why a time-based schedule fails (e.g., resize after 1s)

Progress

Low utilization High utilization

Secret = 0

ProgressSecret = 1

1s (slow)

1s (fast)

☺ Progress-based schedule avoids this problem



Eliminating Action Leakage
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Principle 1 + Principle 2

Secret-dependent 
demand

Secret-dependent 
program timing

Action 
leakage

Root 
Causes

Observable
Leakage

①

③

Existing Static Analyses: CacheAudit1, CaSym2, etc

1Doychev et al., “CacheAudit: A Tool for the Static Analysis of Cache Side Channels” (USENIX Security’13)
2Brotzman et al., “CaSym: Cache aware symbolic execution for side channel detection and mitigation” (SP’19)



Eliminating Action Leakage
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Annotation only helps if the action leakage is timing-independent

Secret-dependent 
demand

Secret-dependent 
program timing

Action 
leakage

Root 
Causes

Observable
Leakage

①

③

Principle 1 + Principle 2

Annotation

Eliminated

Existing Static Analyses: CacheAudit1, CaSym2, etc

1Doychev et al., “CacheAudit: A Tool for the Static Analysis of Cache Side Channels” (USENIX Security’13)
2Brotzman et al., “CaSym: Cache aware symbolic execution for side channel detection and mitigation” (SP’19)



Bound Scheduling Leakage

30

if (secret > 0) {
  sleep(1);
}
// access a large array

Time

Expand at 𝑡2?Expand at 𝑡1?
Victim

Partition 
Size

Key Insight: information is encoded as the duration of remaining 
in a certain partition size

1 extra second

⇒ check resizing, expand!



Covert Channel

31

AttackerVictim



Covert Channel
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AttackerVictim

Sender Receiver

Time

Sender
Partition 

Size

Send “1”

Send “0” Send “1”

Victim cooperatively sends message to attacker using the scheduling “leakage”

Goal: find the maximum data rate between the sender and receiver

☺ Measure and reduce scheduling leakage without analyzing program timing

1 0

A conservative upper bound of scheduling leakage rate



N retired instructions

Mechanism 1: Enforce a Cooldown Time
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Time
Resizing 1 Resizing 2≥ 1𝑚𝑠

Intuition: set a minimum wait time 𝑇𝑐 (e.g., 1ms) between resizes 
to limit how often the sender can resize

Maximum number of instructions the core can retire in 1ms



TimeVictim/Sender

Mechanism 2: Add Random Noise
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Intuition: delay each action by a random time 𝛿 to disrupt the communication

Decision 1 Decision 2

Resizing 1 Resizing 2

TimeAttacker/Receiver

𝛿1 𝛿2

Cause bit errors and reduce the amount of information the attacker learns

Check out our paper for more details on the covert channel model



Evaluation Setup
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…Workload 0 Workload 1 Workload 7

16MB Shared LLC

Core 0 Core 1 Core 7

Gem5

Augment a conventional dynamic last-level cache (LLC) partitioning scheme



Evaluation Results
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Conclusion

▪ Untangle is a general framework for constructing low leakage, 
high-performance dynamic partitioning schemes
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▪ Formally split the leakage into:

Action Leakage Scheduling Leakage

▪ Design principles to untangle program timing from the action leakage

▪ Model the scheduling leakage without analyzing program timing

▪ Applied to dynamic LLC partitioning ⇒ Same performance, less leakage
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Thanks for Listening!

“Untango”

Tango, pls?

No!…
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