
Untangle: A Principled Framework to Design Low-Leakage,
High-Performance Dynamic Partitioning Schemes

Zirui Neil Zhao*, Adam Morrison, Christopher W. Fletcher, Josep Torrellas

University of Illinois Tel Aviv University

ASPLOS’23 – Session 9C: Hardware Security

*Will be on the job market this fall, seeking a faculty position

Microarchitectural Side-Channel Attacks

AttackerVictim

Caches TLB

Execution Ports

BTB

…

Shared Hardware Resources

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/ 1

https://xkcd.com/2176
https://xkcd.com/1808/

Microarchitectural Side-Channel Attacks

AttackerVictim

Shared Hardware Resources

*Characters are based on https://xkcd.com/2176 and https://xkcd.com/1808/ 2

Caches TLB

Execution Ports

BTB

…

https://xkcd.com/2176
https://xkcd.com/1808/

Static Resource Partitioning as a Defense

Shared Hardware Resources

Victim Attacker

 Resource Starvation  Resource Wastage

High
Demand

Low
Demand

3

No Peeking!

Dynamic Partitioning and Its Leakage

Shared Hardware Resources

AttackerVictim Low
Demand

High
Demand

4

No Peeking!

Dynamic Partitioning and Its Leakage

Shared Hardware Resources

AttackerVictim

5

No Peeking!

Dynamic Partitioning and Its Leakage

Shared Hardware Resources

☺ High Performance

AttackerVictim

6

No Peeking!

Dynamic Partitioning and Its Leakage

Shared Hardware Resources

Victim

☺ High Performance

 Some Information Leakage

Attacker

7

I see your
expansion

Quantify the Leakage

Shared Hardware Resources

Victim Attacker

8

1. Measure information leakage

Leakage
Quantify my

leakage

Quantify the Leakage

Shared Hardware Resources

Victim Attacker

9

1. Measure information leakage

Leakage
Quantify my

leakage

Quantify the Leakage

Shared Hardware Resources

Victim Attacker

10

Leakage

1. Measure information leakage

Quantify my
leakage

Quantify the Leakage

Shared Hardware Resources

Victim Attacker

2. Stop resizing once the leakage budget is reached

11

Stop!
Leakage

Less Leakage, More Performance

12

Victim

Leakage

Less Leakage, More Performance

Lower leakage rate ⇒ More resizings under the budget ⇒ Better performance

13

Victim

Leakage

Untangle: Contributions

Lower leakage rate ⇒ More resizings under the budget ⇒ Better performance

Our Main Contributions:
▪ A general framework to tightly quantify the leakage

14

☺ Start fresh with leakage quantification in mind

Victim

Leakage

▪ Designs that reduce the leakage

Threat Model

▪ A leakage budget

▪ No resizing after reaching
the budget

Idealized
Attacker

▪ Directly observe the victim’s resizing

▪ Observations are instantaneous and
accurate

15

Victim

Leakage

Generalized Dynamic Partitioning

16

Component 1: Utilization Metric

Example: Dynamic last-level cache (LLC) partitioning

Reflects a program’s resource demand and guides resizing

Shared LLC

Core 0

Private
Caches

Core 1

Private
Caches

Core N

Private
Caches

… Metric:
LLC miss rate

Generalized Dynamic Partitioning

17

Component 2: Action Heuristic

Decides what resizing action to perform based on the utilization

LLC miss rate

High
Expand the partition

Maintain the partition

Shrink the partition

TimeFixed-progress:

TimeFixed-time:

Generalized Dynamic Partitioning

18

Component 3: Resizing Schedule

Determines when to check the utilization and perform the action

Resizing 1 Resizing 2 Resizing 3

T cycles T cycles

Resizing 1 Resizing 2 Resizing 3

N retired
instructions

N retired
instructions

Common choice

Split the Leakage

19

Action Leakage Scheduling Leakage

Utilization Metric

Action Heuristic &
Resizing Actions

Resizing Schedule

Attacker observable

Action Leakage

Victim
Partition

Size

Time

Shrink?

Maintain?

Expand?

Action Leakage: what resizing action to perform

20

if (secret > 0) {
 // traverse a large array
} else if (secret < 0) {
 // traverse a small array
} else {
 // do nothing
}

Secret-dependent demand

⇒ check resizing, expand?

Scheduling Leakage

Expand at 𝑡2?Expand at 𝑡1?

𝑡1 𝑡2

Scheduling Leakage: when resizing action occurs

if (secret > 0) {
 sleep(1);
}
// traverse a large array

Time

Victim
Partition

Size

Secret-dependent timing

Check out our paper for more details on how we formally split the leakage

21

⇒ check resizing, expand!

“What” and “When” are Entangled

Resizing 1

What

Expand?
Maintain?

Shrink?

22

When
𝑡1? 𝑡2? 𝑡3?

𝑡4? 𝑡5?

Resizing 2

What

Expand?
Maintain?

Shrink?

When
𝑡6? 𝑡7? 𝑡10?

𝑡8? 𝑡9?

“What” and “When” are Entangled

Resizing 1

What

Expand?
Maintain?

Shrink?

23

When
𝑡1? 𝑡2? 𝑡3?

𝑡4? 𝑡5?

Resizing 2

What

Expand?
Maintain?

Shrink?

When
𝑡6? 𝑡7? 𝑡10?

𝑡8? 𝑡9?

Resizing 3

What

Expand?
Maintain?

Shrink?

When
𝑡11? 𝑡15? 𝑡13?

𝑡12? 𝑡14?

…

…

Hard to analyze!

Untangle It!

24

Secret-dependent
demand

Secret-dependent
program timing

Action
leakage

Scheduling
leakage

Root
Causes

Observable
Leakage

Measure and reduce it without
analyzing program timing

①

② ③

④

Eliminate action leakage

☺ Static Program Analysis  Impractical to analyze

Principle 1: Timing-Independent Metric

25

The value of the metric cannot depend on the actual instruction timing

Example of what is not a timing-independent metric for cache:

Number of cache hits in the past T cycles

Cache hits are timing-dependent
on out-of-order processors

Profiling window is timing-dependent

Principle 1: Timing-Independent Metric

26

Turning it to a timing-independent metric:

Memory footprint of the past N retired instructions

Same value regardless of cache hits or not Same profiling window regardless
how fast the program runs

The value of the metric cannot depend on the actual instruction timing

Principle 2: Progress-Based Schedule

27

Tie resizing points to when the program has made a certain progress
(e.g., every 1B retired instructions)

Example of why a time-based schedule fails (e.g., resize after 1s)

Progress

Low utilization High utilization

Secret = 0

ProgressSecret = 1

1s (slow)

1s (fast)

☺ Progress-based schedule avoids this problem

Eliminating Action Leakage

28

Principle 1 + Principle 2

Secret-dependent
demand

Secret-dependent
program timing

Action
leakage

Root
Causes

Observable
Leakage

①

③

Existing Static Analyses: CacheAudit1, CaSym2, etc

1Doychev et al., “CacheAudit: A Tool for the Static Analysis of Cache Side Channels” (USENIX Security’13)
2Brotzman et al., “CaSym: Cache aware symbolic execution for side channel detection and mitigation” (SP’19)

Eliminating Action Leakage

29

Annotation only helps if the action leakage is timing-independent

Secret-dependent
demand

Secret-dependent
program timing

Action
leakage

Root
Causes

Observable
Leakage

①

③

Principle 1 + Principle 2

Annotation

Eliminated

Existing Static Analyses: CacheAudit1, CaSym2, etc

1Doychev et al., “CacheAudit: A Tool for the Static Analysis of Cache Side Channels” (USENIX Security’13)
2Brotzman et al., “CaSym: Cache aware symbolic execution for side channel detection and mitigation” (SP’19)

Bound Scheduling Leakage

30

if (secret > 0) {
 sleep(1);
}
// access a large array

Time

Expand at 𝑡2?Expand at 𝑡1?
Victim

Partition
Size

Key Insight: information is encoded as the duration of remaining
in a certain partition size

1 extra second

⇒ check resizing, expand!

Covert Channel

31

AttackerVictim

Covert Channel

32

AttackerVictim

Sender Receiver

Time

Sender
Partition

Size

Send “1”

Send “0” Send “1”

Victim cooperatively sends message to attacker using the scheduling “leakage”

Goal: find the maximum data rate between the sender and receiver

☺ Measure and reduce scheduling leakage without analyzing program timing

1 0

A conservative upper bound of scheduling leakage rate

N retired instructions

Mechanism 1: Enforce a Cooldown Time

33

Time
Resizing 1 Resizing 2≥ 1𝑚𝑠

Intuition: set a minimum wait time 𝑇𝑐 (e.g., 1ms) between resizes
to limit how often the sender can resize

Maximum number of instructions the core can retire in 1ms

TimeVictim/Sender

Mechanism 2: Add Random Noise

34

Intuition: delay each action by a random time 𝛿 to disrupt the communication

Decision 1 Decision 2

Resizing 1 Resizing 2

TimeAttacker/Receiver

𝛿1 𝛿2

Cause bit errors and reduce the amount of information the attacker learns

Check out our paper for more details on the covert channel model

Evaluation Setup

35

…Workload 0 Workload 1 Workload 7

16MB Shared LLC

Core 0 Core 1 Core 7

Gem5

Augment a conventional dynamic last-level cache (LLC) partitioning scheme

Evaluation Results

36

Average Normalized IPC Average Leakage per Resizing

1

1.14 1.14
1.12

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 IP
C

3.2

0.7

0

1

2

3

4

Conventional Untangle

B
it

s

Better

Better

More resizings under a given
leakage threshold

Same performance

Less leakage

Conclusion

▪ Untangle is a general framework for constructing low leakage,
high-performance dynamic partitioning schemes

37

▪ Formally split the leakage into:

Action Leakage Scheduling Leakage

▪ Design principles to untangle program timing from the action leakage

▪ Model the scheduling leakage without analyzing program timing

▪ Applied to dynamic LLC partitioning ⇒ Same performance, less leakage

38

Thanks for Listening!

“Untango”

Tango, pls?

No!…

	Cover
	Slide 0: Untangle: A Principled Framework to Design Low-Leakage, High-Performance Dynamic Partitioning Schemes

	Background
	Slide 1: Microarchitectural Side-Channel Attacks
	Slide 2: Microarchitectural Side-Channel Attacks
	Slide 3: Static Resource Partitioning as a Defense
	Slide 4: Dynamic Partitioning and Its Leakage
	Slide 5: Dynamic Partitioning and Its Leakage
	Slide 6: Dynamic Partitioning and Its Leakage
	Slide 7: Dynamic Partitioning and Its Leakage

	Untangle Intro
	Slide 8: Quantify the Leakage
	Slide 9: Quantify the Leakage
	Slide 10: Quantify the Leakage
	Slide 11: Quantify the Leakage
	Slide 12: Less Leakage, More Performance
	Slide 13: Less Leakage, More Performance
	Slide 14: Untangle: Contributions
	Slide 15: Threat Model

	Understand Leakage
	Slide 16: Generalized Dynamic Partitioning
	Slide 17: Generalized Dynamic Partitioning
	Slide 18: Generalized Dynamic Partitioning
	Slide 19: Split the Leakage
	Slide 20: Action Leakage
	Slide 21: Scheduling Leakage
	Slide 22: “What” and “When” are Entangled
	Slide 23: “What” and “When” are Entangled

	Untangle Framework
	Slide 24: Untangle It!
	Slide 25: Principle 1: Timing-Independent Metric
	Slide 26: Principle 1: Timing-Independent Metric
	Slide 27: Principle 2: Progress-Based Schedule
	Slide 28: Eliminating Action Leakage
	Slide 29: Eliminating Action Leakage
	Slide 30: Bound Scheduling Leakage
	Slide 31: Covert Channel
	Slide 32: Covert Channel
	Slide 33: Mechanism 1: Enforce a Cooldown Time
	Slide 34: Mechanism 2: Add Random Noise

	Evaluation
	Slide 35: Evaluation Setup
	Slide 36: Evaluation Results

	Outro
	Slide 37: Conclusion
	Slide 38: Thanks for Listening!

