
Pinned Loads: Taming Speculative Loads in
Secure Processors

Zirui Neil Zhao, Houxiang Ji, Adam Morrison, Darko Marinov, Josep Torrellas

University of Illinois Tel Aviv University

ASPLOS’22

Speculative Execution Attacks

1

Modern microprocessors are threatened by speculative execution side-channel attacks

if (x < array1_size) {

uint8 secret = array1[x]; // access

…

uint8 y = array2[secret * 4096]; // transmit

}

Malicious input: x > array1_size

Predicts taken Mistrained the branch
Speculative access

(out-of-bound)
Memory system

Speculative leakage

Visibility Point (VP)

2

Fence
(delay speculative loads until VP)

Reach VP sooner ⇒ Better performance

if (x < array1_size) { // b1
secret = array1[x]; // l1
…
load secret; // l2

}

Assume: x is in-bound, b1 resolves to taken

l2 l1 b1
ROB
HeadPre-VP

Resolved to taken

l2 l1 b1
ROB
HeadPost-VP

Unresolved

l1 and l2 are allowed to execute
VP VP

Hardware Defenses: protect the execution of vulnerable instructions until they reach their
visibility point (VP) --- i.e., they are no longer vulnerable to pipeline squashes that are
relevant to the threat model considered

VP Under the Comprehensive Model

3

§ All control-flow instructions older than L are resolved

Comprehensive Model

§ L plus any older instruction cannot suffer exceptions

§ L plus any older load cannot alias with other loads/stores

§ L plus any older load cannot cause a memory consistency
violation (MCV)

Consider: vulnerable instruction=> Load (L)

l1 b1
ROB
HeadL

L needs to reach the ROB head or become the
oldest load to be invulnerable to MCV

Focus on Memory Consistency Violations

4

§ No control-flow mispredictions

Conditions of Reaching VP
(Comprehensive Model)

§ No exceptions

§ No aliasing

§ No MCVs

Ensuring no MCVs causes the most overhead

Execution overhead breakdown of Fence
(by each reason that delays reaching the VP)

Benchmark Suites

Pinned Loads

5

Goal: a general hardware mechanism that makes loads invulnerable to MCVs
as early as possible

Intuition: When certain conditions are satisfied, Pinned Loads will pin a load L
and guarantee:

§ No squashes of L due to invalidations
§ No squashes of L due to cache evictions

Þ after pinning, L is invulnerable to MCVs

L reaches VP sooner (before reaching the ROB head) ⇒ higher performance

Potential Performance Gain

6

VP

ld3 ld2 ld1 ROB
Head

Conventional Unsafe

ld3 ld2 ld1
ROB
Head

Fence

ld3 ld2 ld1
ROB
Head

Fence + Pinned Loads

ld3 ld2 ld1 ROB
Head

Serialized!

VPVP

All independent loads in parallel Quickly “pass” the VP downstream,
issue all independent loads in parallel

Issue to
mem

VP

Threat Model

7

Assume the Comprehensive threat model:
§ No control-flow mispredictions
§ No aliasing
§ No exceptions
§ No MCVs

Preserve the speculative execution security properties of the baseline
defense schemes:

A load L can be pinned only if L has met all the conditions to reach VP,
except for guaranteeing L itself will not cause an MCV

br1 ld2 ld1 ROB
Head

L Implication: Loads are pinned in the
program order

No exceptions, aliasing,
and mispredictions

Pinned Loads Overview

8

Intuition: defer invalidations and prevent evictions to lines that are read by a pinned load

ldx … … LQ
Head

Line x L1

Extra pinned bits

Snoop LQ

Line x is automatically “un-pinned” when ldx retires

Deny/Defer

Deny/Defer Invalidation/Eviction

Conceptually, line x is “pinned” (no actual pinned bit)

Pinned Loads Overview

9

Intuition: defer invalidations and prevent evictions to lines that are read by a pinned load

ldx … … LQ
Head

Line x L1

Extra pinned bits

Snoop LQ

Line x is automatically “un-pinned” when ldx retires

Deny/Defer

Deny/Defer Invalidation/Eviction

Design Overview:

§ Defer Invalidations: introduce new coherence
messages to defer remote writes

Safety guarantees:
+ No starvation
+ No deadlock (detailed in the paper)

§ Prevent Cache Evictions: guarantee space in cache
& directory:
+ Late Pinning (LP)
+ Early Pinning (EP)Conceptually, line x is “pinned” (no actual pinned bit)

Defer Invalidations to Pinned Lines

10

2 Inv

2 Data

1 GetX

0 Write

S

Core 1
Core 2

1 0

Sharer Bits

L1 L1

Directory Data

Conventional Protocol

Defer Invalidations to Pinned Lines

11

1 GetX2 Inv

2 Data

0 Write

S → I

Core 1
Core 2

1 0

Sharer Bits

L1 L1

Directory Data

Conventional Protocol

3 Ack

4 Unblock

Pinned Loads

2 Inv

2 Data

1 GetX

0 Write

S

Core 1
Core 2

1 0

Sharer Bits

L1 L1

Directory Data

Defer Invalidations to Pinned Lines

12

1 GetX2 Inv

2 Data

0 Write

S → I

Core 1
Core 2

1 0

Sharer Bits

L1 L1

Directory Data

Conventional Protocol

3 Ack

4 Unblock

Pinned Loads

2 Inv

2 Data

1 GetX

0 Write

S

Core 1
Core 2

1 0

Sharer Bits

L1 L1

Directory Data

3 Defer

4 Abort

Directory state is
unchanged after Abort

Core 2 will retry the write

Changes from the Conventional: new coherence messages (and the logic of handling them)

Prevent Store Starvation

13

Cannot-Pin Table (CPT): a per-core hardware structure that records the
addresses of lines that the core is not allowed to pin at the moment

New load x cannot be pinned

Failed Retry

2 Inv*

3 Defer

2 Data

1 GetX*

4 Abort

0 Write x
Line x is now unpinned

Successful Retry

2 Inv*

2 Data

1 GetX*

0 Write x

S

Core 1

Core 2

1 0

Sharer Bits

Directory Data

x

CPT CPT

3 Update CPT

x S

Core 1

Core 2

1 0

Sharer Bits

Directory Data

CPT CPT

Prevent Store Starvation

14

New load x cannot be pinned

1 GetX*
2 Inv*

2 Data

3 Defer

4 Abort

0 Write x

S

Core 1

Core 2

1 0

Sharer Bits

Directory Data

x

CPT

3 Update CPT

CPT

Line x is now unpinned

1 GetX*
2 Inv*

2 Data

3 Ack

4 Unblock

0 Write x

S → I

Core 1

Core 2

1 0

Sharer Bits

Directory Data

x

CPT CPT

Cannot-Pin Table (CPT): a per-core hardware structure that records the
addresses of lines that the core is not allowed to pin at the moment

Failed Retry Successful Retry

Prevent Store Starvation

15

New load x cannot be pinned

1 GetX*
2 Inv*

2 Data

3 Defer

4 Abort

0 Write x

S

Core 1

Core 2

1 0

Sharer Bits

Directory Data

x

CPT

3 Update CPT

CPT

1 GetX*
2 Inv*

2 Data

3 Ack

4 Unblock

0 Write x

I

Core 1

Core 2

0 1

Sharer Bits

Directory Data

CPT CPT

5 Clear
6 Remove x

Cannot-Pin Table (CPT): a per-core hardware structure that records the
addresses of lines that the core is not allowed to pin at the moment

Failed Retry Successful Retry

x

x

Core 1

ld x // L1 Hit
ld y // L1 Miss

1:
2:

a2-way L1

ldy ldx
ROB
Head

Line x and y are mapped
to the same L1 set

Prevent Evictions of Pinned Lines

16

1 Issue 2 Evict

4 Update LRU for line x

3 Deny

Intuition: Pinned Loads denies evictions to pinned lines

x

Core 1

ld x // L1 Hit
ld y // L1 Miss

1:
2:

a2-way L1

ldy ldx
ROB
Head

Line x and y are mapped
to the same L1 set

Prevent Evictions of Pinned Lines

17

4 Update LRU for line x

Intuition: Pinned Loads denies evictions to pinned lines

5 Retry

y

Guarantee Space in Cache & Directory

18

ld x // L1 Miss
ld y // L1 Hit
ld z // L1 Hit

1:
2:
3:

Insight: a core cannot pin more lines than a set can hold, otherwise, deadlocks may occur

Line x, y, and z are mapped
to the same L1 set 1 Ld x is denied by both ld y & z

2 Ld y & z are blocked by ld x

Two possible designs to avoid deadlock

Hit Hit Miss

Core 1

y z2-way L1

ldy ldxldz
ROB
Head Deadlock!

Ld x, y, and z are pinned
before issuing

Design 1: Late Pinning (LP)

19

ld x // L1 Miss
ld y
ld z

1:
2:
3:

Intuition: receive the data first (meaning it can find space in cache and directory sets),
then pin the load

Line x, y, and z are mapped
to the same L1 set

Miss

Core 1

y z2-way L1

ldy ldxldz
ROB
Head

x

Design 1: Late Pinning (LP)

20

ld x // L1 Miss
ld y
ld z

1:
2:
3:

Intuition: receive the data first (meaning it can find space in cache and directory sets),
then pin the load

Line x, y, and z are mapped
to the same L1 set

Miss

Core 1

x z2-way L1

ldy ldxldz
ROB
Head

y

Miss

Design 1: Late Pinning (LP)

21

ld x // L1 Miss
ld y
ld z

1:
2:
3:

Intuition: receive the data first (meaning it can find space in cache and directory sets),
then pin the load

Line x, y, and z are mapped
to the same L1 set

Miss

Core 1

x y2-way L1

ldy ldxldz
ROB
Head

Miss

Ld z will stall until ld x retires and unpins x
(slow but safe from deadlock)

+ Simple hardware

- Low performance for programs
with high L1 miss rates

Serialized memory access, but it
issues loads much earlier than it
would in Fence

Design 2: Early Pinning (EP)

22

Intuition: add a small local hardware table called Cache Shadow Table (CST) in each core.
CST tracks, for each set in L1 and LLC/Dir, how many lines are pinned by in-flight loads

2-way L1-CST

x

(LLC/Dir CST omitted)

Core 1

z y2-way L1

ldy ldxldz
ROB
Head

ld x
ld y
ld z

1:
2:
3:

Line x, y, and z are
mapped to the same
L1 set (and the same
CST set)

Checks before pinning a load:
1) Hardware determines the L1 set and

the LLC/Dir set where the line maps
2) Access CST sets and check if such sets

can hold the additional pinned line
3) Pin the load if find space in each

cache level and directory

Design 2: Early Pinning (EP)

23

Core 1

ldy ldxldz
ROB
Head

Intuition: add a small local hardware table called Cache Shadow Table (CST) in each core.
CST tracks, for each set in L1 and LLC/Dir, how many lines are pinned by in-flight loads

x

2-way L1-CST

y

Checks before pinning a load:
1) Hardware determines the L1 set and

the LLC/Dir set where the line maps
2) Access CST sets and check if such sets

can hold the additional pinned line
3) Pin the load if find space in each

cache level and directory

ld x
ld y
ld z

1:
2:
3:

Line x, y, and z are
mapped to the same
L1 set (and the same
CST set)

z y2-way L1 (LLC/Dir CST omitted)

Design 2: Early Pinning (EP)

24

Core 1

ldy ldxldz
ROB
Head

Intuition: add a small local hardware table called Cache Shadow Table (CST) in each core.
CST tracks, for each set in L1 and LLC/Dir, how many lines are pinned by in-flight loads

x y

2-way L1-CST

ld x
ld y
ld z

1:
2:
3:

Line x, y, and z are
mapped to the same
L1 set (and the same
CST set)

The L1-CST set is full, ldz will remain unpinned
(slow but safe from deadlock)

CST for a shared cache requires small changes
in its geometry (detailed in the paper)

z y2-way L1 (LLC/Dir CST omitted)

Design 2: Early Pinning (EP)

25

Core 1

ldy ldxldz
ROB
Head

Intuition: add a small local hardware table called Cache Shadow Table (CST) in each core.
CST tracks, for each set in L1 and LLC/Dir, how many lines are pinned by in-flight loads

ld x
ld y
ld z

1:
2:
3:

Line x, y, and z are
mapped to the same
L1 set (and the same
CST set)

All independent loads in parallel
(assume enough space)

+ Parallelized access

- Require CSTs

z y2-way L1

x y

2-way L1-CST
(LLC/Dir CST omitted)

Pinned Loads Summary

26

§ L has met all the conditions to reach the VP except for guaranteeing L itself
will not cause an MCV

For a load L, it can be pinned if:

§ Write buffer has enough entries for all the yet-to-complete stores older than L
(detailed in the paper)

§ The line that L tries to pin is not in Cannot-Pin Table (CPT)

§ Guaranteeing space in cache & directory

• L has received the data, or

• CSTs report enough space in L1 cache and LLC/Dir

⇒ Late Pinning (LP)

⇒ Early Pinning (EP)

Security

Avoid
Deadlock

Avoid Starvation

Mechanism: defer invalidations and prevent evictions to lines that are read by a pinned load

Performance Evaluation

27

Workloads: single-threaded (SPEC17) and parallel (SPLASH2 + PARSEC) Defenses: Fence, DOM, and STT

≈50% overhead reduction (with EP)

Geo. Mean Execution Overhead over a Conventional Unsafe Core (SPEC17)

112.6%

66.4%
51.3%

34.5%

Bas
e

Bas
e+L

P
Bas

e+E
P

Bas
e+S

pec
tre

Fence

35.8%
32.3%

15.3%
9.7%

Bas
e

Bas
e+L

P
Bas

e+E
P

Bas
e+S

pec
tre

DOM

24.8%
19.5%

13.2%

6.4%

Bas
e

Bas
e+L

P
Bas

e+E
P

Bas
e+S

pec
tre

STT

Conclusions

28

§ Under the Comprehensive model, most execution overhead is caused by
ensuring no memory consistency violations (MCVs)

§ Pinned Loads can substantially reduce execution overhead of many
existing defense schemes by ≈50%

§ Pinned Loads is a general technique to reduce the execution overhead of
speculative-execution defense schemes by making loads invulnerable to
MCVs as early as possible

Open Source: https://github.com/zzrcxb/PinnedLoads

https://github.com/zzrcxb/PinnedLoads

Pinned Loads: Taming Speculative Loads in
Secure Processors

Zirui Neil Zhao, Houxiang Ji, Adam Morrison, Darko Marinov, Josep Torrellas

University of Illinois Tel Aviv University

ASPLOS’22 – Session 3B

ziruiz6@illinois.edu

