
Speculative Interference Attacks:
Breaking Invisible Speculation

Schemes
Mohammad Behnia, ​ ↑1  Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Zhao, ​ ↑2  Xiang Zou,

​ ↑2  Thomas Unterluggauer, Josep Torrellas, ​ ↑2  Carlos Rozas, ​ ↑3  Adam Morrison, ​ ↑2  Frank Mckeen,

​ ↑2  Fangfei Liu, ​ ↑4  Ron Gabor, Christopher W. Fletcher, ​ ↑2  Abhishek Basak, ​ ↑5  Alaa Alameldeen

University of Illinois at Urbana-Champaign, ​ ↑1  University of Texas at Austin, ​ ↑2  Intel Corporation,

​ ↑3  Tel Aviv University, ​ ↑4  Toga Networks, ​ ↑5  Simon Fraser University

1	

Introduction

2	

•  Microarchitectural Side Channels
•  Cache-based

•  Spectre Attack
•  Variant 1

•  Advantages to Attacker
•  Persistent State Change
•  Shared Cache Hierarchy

3	

Invisible Speculation Schemes

•  Invisible Speculation Schemes
•  Mechanisms to thwart speculative,

persistent cache state changes

•  Example: Delay-On-Miss
•  Any cache state change is deferred until

load becomes non-speculative
•  Loads that hit in the L1 forward results to

dependent instructions

•  Observation: Secret-Dependent timing
effects can be monitored indirectly by
how they interact with older non-
speculative instructions

•  Idea: By creating a “ripple effect” we can
transform transient interactions into
persistent state changes in the cache
even with invisible speculation enabled

4	

Speculative Interference Attacks

•  Can induce contention on a large number of microarchitectural resources
using different instructions

•  If this “ripple effect” targets non-speculative memory accesses it can
affect their ordering

5	

Speculative Interference Attacks

6	

Attack Framework

•  Speculative Interference Attacks undermine the security of a prominent
family of Hardware Spectre Defenses

•  1. Mis-speculated younger instructions can affect the timing of older
bound-to-retire instructions including memory operations

•  2. Altering timing of memory operations can change the order of one
memory operation relative to others and expose secrets via persistent
changes to cache state

7	

Story of this Paper

•  Attack Variants
•  D-Cache PoC
•  Defenses

8	

Outline

•  Type 2: Secret-dependent interference time

9	

Interference Gadgets

•  Type 1: Operand-dependent resource
usage patterns

•  Type 3: Interference existence is
secret-dependent

10	

Interference Gadgets

11	

Gadget + Target

12	

Gadget + Target

13	

Gadget + Target

14	

Gadget + Target

•  Victim L1 D-cache and L1 I-
cache access streams

•  Can also manifest in
permutations of D-cache
and I-cache memory access
patterns

15	

Interference Targets

​V↑D : Victim Data Access

​V↑I : Victim Instruction Fetch

​A↑D : Attacker Data Access

16	

Vulnerability Matrix

Target Variant Reference Load

​𝑉↑𝐷 − ​𝑉↑𝐷  ​𝑉↑𝐷 
​𝑉↑𝐷 − ​𝑉↑𝐼  ​𝑉↑𝐷 
​𝑉↑𝐷 − ​𝐴↑𝐷  ​𝐴↑𝐷 
​𝑉↑𝐼 − ​𝐴↑𝐷  ​𝐴↑𝐷 

Gadget Target

•  Victim	and	Attacker	Threads	on	
Separate	Cores	

•  Shared	memory	addresses	A	
and	B	that	map	to	same	LLC	set	
and	slice	

•  Victim	issues	A-B	or	B-A	using	
secret	dependent	load	ordering	

•  Attacker	primes	and	probes	
replacement	policy	state	of	LLC	
set	to	identify	issue	order	

17	

D-Cache PoC

+->A	=	load(interference_target())		
| 	//	VSQRTPD	dependency	chain		
|		if	(...)		//	miss-speculation	
|				secret	=	load(...);								
|				x	=	load(secret);	//	hit-miss									
+---	interference_gadget(x);		

	//	VSQRTPD	ready	to	execute	
	
VSQRTPD	
1 micro-op execution port 0
Latency of 15–16 cycles
Reciprocal throughput of 9–12 cycles	
				
	
	

18	

D-Cache PoC Interference Gadget

• Quad	Age	LRU	Replacement	Policy	
•  QLRU_H11_M1_R0_U0	

19	

D-Cache PoC Receiver Protocol

20	

D-Cache PoC End-to-End

•  Intel Core i7-7700 Kaby
Lake CPU with 4 physical
cores @ 3.6GHz

•  Unified Reservation Station,
8 execution ports

•  POC Attacker and Victim
Threads run in multi-core
configuration

21	

D-Cache PoC Bitrate

•  Ideal Invisible Speculation: LLC access pattern being invariant of
speculation

•  Basic Defense: Fences to prevent issue of ROB instructions until window
becomes non-speculative

•  More advanced Defense:
•  Not Delaying Older Instructions:

•  Priority Tagging based on speculative window in RS
•  Scheduler to predict speculative interference

•  Not Releasing Resources Early:
•  Operand independent executions times

22	

Discussion of Defenses

23	

Thank You

