
Jamais Vu: Thwarting Microarchitectural Replay Attacks

Dimitrios Skarlatos† , Zirui Neil Zhao†, Riccardo Paccagnella,
Christopher Fletcher, Josep Torrellas

ASPLOS’21

1

University of Illinois Carnegie Mellon University

† Authors contributed equally to this work

The Era of Side-Channels

2

L2
L2

Core

L3

I-L1D-L1

L2

Main

Memory

Processor

ROB BranchTLB ALU

FPU

Scheduler

Port 0 Port 1 Port 2 Port 3

LSQ
DRAMA’16

TLBLeed’18Spectre’18

PortSmash’18 Non-Inclusive LLC’19

TLB

Contention’13

SGX

Prime+Probe’134K-Alliasing’18

Branch

Predictors’16
Subnormal

FPU’15

The Era of Side-Channels

3

L2
L2

Core

L3

I-L1D-L1

L2

Main

Memory

Processor

ROB BranchTLB ALU

FPU

Scheduler

Port 0 Port 1 Port 2 Port 3

LSQ
DRAMA’16

TLBLeed’18Spectre’18

PortSmash’18 Non-Inclusive LLC’19

TLB

Contention’13

SGX

Prime+Probe’134K-Alliasing’18

Branch

Predictors’16
Subnormal

FPU’15

Port Contention Attack*

while (true) {
start = time();
// use shared resource
latency = time() - start;

}

Attacker (controls OS):

Attacker can infer the secret based on the measured latency:
▪ If latency > threshold: secret = 1;
▪ If latency <= threshold: secret = 0;

However, this side-channel is noisy, attacker needs repeated victim execution to be confident

How to force victim to repeatedly execute vulnerable code?

if (secret) {
// use shared resource

} else {
// don’t use shared resource

}

Victim (in SGX):

4*Aldaya et al. "Port contention for fun and profit." (SP’19)

Microarchitectural Replay Attacks* (MRAs)

* Skarlatos et al., “MicroScope: Enabling Microarchitectural Replay Attacks” (ISCA’19)

Insight: Attacker triggers a large or unlimited number of pipeline squashes in
the victim thread to replay vulnerable code

▪ Attacker clears page-table entry present bit of x
and flushes TLB

▪ Victim speculatively executes vulnerable code

▪ Page fault occurs in the victim thread. Victim
squashes the pipeline

▪ Victim invokes OS (controlled by attacker)

Execute!

5

load x; // x is public
…
if (secret) {

// use shared resource
} else {

// don’t use shared resource
}

Victim (in SGX):

MRAs are beyond speculative execution side-channel attacks (e.g., Spectre)

Squash
✗ Page fault

Generalized MRAs

6

Sources of squash: Exception, branch misprediction, memory consistency model violation

replay handle;
inst1;
inst2;
…
victim;Execute

Squash

can cause squashes,
e.g., load, branch

execution can
reveal secrets

Attacker: Can be either supervisor- or user-level

Replay handle: Load, branch, instruction that can raise exceptions

Victim: Any instruction

Jamais Vu: the 1st Defense Mechanism to Thwart MRAs

7

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

Record

{V0, V1, …, Vn}

Intuition: detect instructions that have been squashed and protect their re-execution with Fences

Jamais Vu: the 1st Defense Mechanism to Thwart MRAs

8

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

Refill

Intuition: detect instructions that have been squashed and protect their re-execution with Fences

Check

{V0, V1, …, Vn}

{V0, V1, …, Vn}

Jamais Vu: the 1st Defense Mechanism to Thwart MRAs

9

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

Fenced

Fence delays an instruction execution until it is guaranteed to retire

Intuition: detect instructions that have been squashed and protect their re-execution with Fences

{V0, V1, …, Vn}

Jamais Vu: the 1st Defense Mechanism to Thwart MRAs

10

Vn … V1 V0
ROB
Head

Victims

“Forget” the information
at some point

Fenced

Intuition: detect instructions that have been squashed and protect their re-execution with Fences

Jamais Vu: the 1st Defense Mechanism to Thwart MRAs

11

1. How to record squashed instructions?

2. For how long to keep it?

EpochCounter Clear-on-Retire

Jamais Vu

Trade-offs between security, execution overhead, and implementation complexity

Scheme 1: Counter

12

Intuition: For each static instruction, use a counter to record the
difference between squashes and retirements

Instruction PC Counter

PC(H) 0

PC(V0)

PC(V1)

PC(Vn)

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

0

0

0

Scheme 1: Counter

13

Intuition: For each static instruction, use a counter to record the
difference between squashes and retirements

Instruction PC Counter

PC(H) 0

PC(V0)

PC(V1)

PC(Vn)

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

1

1

1

Increment

Squash: Increment counters of squashed instructions

Scheme 1: Counter

14

Intuition: For each static instruction, use a counter to record the
difference between squashes and retirements

Instruction PC Counter

PC(H) 0

PC(V0)

PC(V1)

PC(Vn)

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

Check

1

1

1

Refill: Fence if the instruction’s counter > 0

Refill

Scheme 1: Counter

15

Intuition: For each static instruction, use a counter to record the
difference between squashes and retirements

Instruction PC Counter

PC(H) 0

PC(V0)

PC(V1)

PC(Vn)

Vn … V1 V0 H
ROB
Head

Victims Replay Handle

1

1

1

Refill: Fence if the instruction’s counter > 0

Fenced

Scheme 1: Counter

16

Intuition: For each static instruction, use a counter to record the
difference between squashes and retirements

Instruction PC Counter

PC(H) 0

PC(V0)

PC(V1)

PC(Vn)

Vn … V1 V0
ROB
Head

Victims

Decrement

0

1

1

Retire: Decrement counters of retired instructions (if counter > 0)

Fenced

Bound replays to retirements

Counter: Implementation

17

Counter
page

C0 C1 C2

i0 Code
page

i1 i2

Virtual Address
Space

Fixed
Offset

Find counters in memory

Virtual Address of Instruction

Hit

To pipeline

C0 C1 C2

Counter Cache

Miss

To TLB

+

Offset

Virtual Address
of Counter

Bring counters to pipeline

▪ Hit: check count > 0 before execution

▪ Miss: apply fence, fetch counter when safe

Scheme 2: Clear-on-Retire (CoR)

18

Vn … V1 V0 H
ROB
Head

Victims Replay Handle A set of squashed PCs (PC Buffer)

Squashed
Buffer (SB)

Handle ID

Intuition: Use a set-like structure, namely Squashed Buffer (SB), to record PCs of squashed instructions
and the replay handle. Clear the buffer as soon as the program makes forward progress

Scheme 2: Clear-on-Retire (CoR)

19

Vn … V1 V0 H
ROB
Head

Victims Replay Handle A set of squashed PCs (PC Buffer)

Squashed
Buffer (SB)

Handle ID

Squash: Add PCs of squashed instructions to PC Buffer, update Handle ID to the Replay Handle

Insert

Vn … V1 V0

H

Intuition: Use a set-like structure, namely Squashed Buffer (SB), to record PCs of squashed instructions
and the replay handle. Clear the buffer as soon as the program makes forward progress

Scheme 2: Clear-on-Retire (CoR)

20

Vn … V1 V0 H
ROB
Head

Victims Replay Handle A set of squashed PCs (PC Buffer)

Squashed
Buffer (SB)

Handle ID

Refill: Fence if the instruction’s PC is found in SB

Vn … V1 V0

HCheck
Refill

Intuition: Use a set-like structure, namely Squashed Buffer (SB), to record PCs of squashed instructions
and the replay handle. Clear the buffer as soon as the program makes forward progress

Scheme 2: Clear-on-Retire (CoR)

21

Vn … V1 V0 H
ROB
Head

Victims Replay Handle A set of squashed PCs (PC Buffer)

Squashed
Buffer (SB)

Handle ID

Refill: Fence if the instruction’s PC is found in SB

Vn … V1 V0

H
Fenced

Intuition: Use a set-like structure, namely Squashed Buffer (SB), to record PCs of squashed instructions
and the replay handle. Clear the buffer as soon as the program makes forward progress

Scheme 2: Clear-on-Retire (CoR)

22

Vn … V1 V0
ROB
Head

Victims A set of squashed PCs (PC Buffer)

Squashed
Buffer (SB)

Handle ID

Replay Handle Retire: Clear SB Ensure program makes forward progress

Vn … V1 V0

H
Fenced

Clear

Intuition: Use a set-like structure, namely Squashed Buffer (SB), to record PCs of squashed instructions
and the replay handle. Clear the buffer as soon as the program makes forward progress

Clear-on-Retire: PC Buffer Design

23

PC Buffer: Tests whether a given PC belongs to a set of PCs ⇒ Bloom Filter

False Negatives? Impossible!

0 1 1 …

M bits

PC Buffer1 0

H1 H2 Hn…

PC

False Positives? Possible, lead to over-fencing (safe)

1 0

Scheme 3: Epoch

24

for i in 1..N
x = secrets[i];
handle; // H
victim(x); // V

V2 H2 … V1 H1
ROB
Head

…V3 H3 …

Locality: Iter 1Locality: Iter 2Locality: Iter 3

leaks
secrets[3]

leaks
secrets[2]

leaks
secrets[1]

Victim instructions that are from different localities should
be handled separately

Possible localities: a loop iteration, a whole loop, or a subroutine

Insight: Leakages are typically associated with execution locality. Once program execution
moves to another locality, the same victim instruction is likely to reveal different information

25

V2 H2 … H1…V3 H3 …

Epoch 1Epoch 2

A set of PCs (PC Buffer)

Squashed
Buffer (SB)

Epoch ID

Epoch ID

Epoch ID

ROB
Head

Squash: Add squashed instructions to their corresponding PC buffers

V1

Intuition: Compiler identifies execution localities (i.e., Epochs). Hardware
allocates a different PC Buffer for each Epoch.

Epoch 3

Insert

1

2

3

V1

V2 H2

V3 H3

Scheme 3: Epoch

26

V2 H2 … H1…V3 H3 …

Epoch 1Epoch 2

A set of PCs (PC Buffer)

Squashed
Buffer (SB)

Epoch ID

Epoch ID

Epoch ID

ROB
Head

V1

Epoch 3

Refill: Fence if the instruction’s PC is found in corresponding PC buffer

Check

1

2

3

V1

V2 H2

V3 H3
Refill

Intuition: Compiler identifies execution localities (i.e., Epochs). Hardware
allocates a different PC Buffer for each Epoch.

Scheme 3: Epoch

27

V2 H2 … H1…V3 H3 …

Epoch 1Epoch 2

A set of PCs (PC Buffer)

Squashed
Buffer (SB)

Epoch ID

Epoch ID

Epoch ID

ROB
Head

V1

Epoch 3

Refill: Fence if the instruction’s PC is found in corresponding PC buffer

1

2

3

V1

V2 H2

V3 H3

Fenced

Intuition: Compiler identifies execution localities (i.e., Epochs). Hardware
allocates a different PC Buffer for each Epoch.

Scheme 3: Epoch

28

V2 H2 ……V3 H3

Epoch 2

A set of PCs (PC Buffer)

Squashed
Buffer (SB)

Epoch ID

Epoch ID

Epoch ID

ROB
Head

Epoch 3

Epoch Retire: Clear the PC buffer that is associated with the retired Epoch

2

3

1 V1

V2 H2

V3 H3

Fenced

Clear

Intuition: Compiler identifies execution localities (i.e., Epochs). Hardware
allocates a different PC Buffer for each Epoch.

Scheme 3: Epoch

Scheme 3: Epoch-Rem

29

V5 H4 V4…Vn …

Epoch 4

A set of PCs (PC Buffer)

Squashed
Buffer (SB)

Epoch ID

Epoch ID

Epoch ID

ROB
Head

Instruction Retire (Optional): Remove the instruction’s PC from the PC buffer (Epoch-Rem)

Fenced

Remove

Intuition: Compiler identifies execution localities (i.e., Epochs). Hardware
allocates a different PC Buffer for each Epoch.

4 V4 Vn V5H4

A multi-set of PCs (PC Buffer)

Epoch-Rem: PC Buffer Design

30

Test whether a PC belongs to a multi-set of PCs and support removal ⇒ Counting Bloom Filter

False Negatives? Possible, lead to under-fencing (unsafe)
▪ Rarely happen (~0.02%)
▪ Cannot be controlled by attackers

False Positives? Possible, lead to over-fencing (safe)

PC

M counters

PC Buffer

H1 H2 Hn…

01 … 10 10

k bits

01 0000

Bounding Squashes

31

x = secret;
handle 1; // except.
handle 2; // except.
…
victim(x);

for i in 1..N
x = secrets[i];
if (/*false*/) { // handle

victim(x);
}

for i in 1..N
if (/*false*/) { // handle

victim(x);
}

Example A: straight-line code,
non-transient victim, exception

Example B: loop, transient
victim, branch misprediction

Example C: loop, transient victim leaks
the same data, branch misprediction

1. Source of squash?

2. Victim is transient?

3. Victim is in a loop leaking the same secret every iteration?

32

Scheme

Counter

Example A Example B Example C

1 1 K†

† K: number of unrolled iterations that fit in the ROB

Number of Squashes

Clear-on-Retire |ROB|-1 K K * N

Epoch-Rem-Iter 1 1 N

Epoch-Rem-Loop 1 1 K

Bounding Squashes

x = secret;
handle 1; // except.
handle 2; // except.
…
victim(x);

for i in 1..N
x = secrets[i];
if (/*false*/) { // handle

victim(x);
}

for i in 1..N
if (/*false*/) { // handle

victim(x);
}

Example A: straight-line code,
non-transient victim, exception

Example B: loop, transient
victim, branch misprediction

Example C: loop, transient victim leaks
the same data, branch misprediction

Summary of Designs

33

Clear-on-Retire

Counter Count associated with
static instruction

Forever

Scheme How to record? For how long? ComplexityProtection

Epoch-Rem-Iter

Epoch-Rem-Loop

Until an entire loop
iteration retires

Until the entire loop
retires

Until replay handle
instruction retires

Strong

Weak

Medium

Strong

Complex

Simple

Medium

Medium

Squashed Buffer (SB)
associated with ROB

2.9%

11.0%
13.8%

23.1%

0%

10%

20%

30%

Geo. Mean of Execution Overhead over unsafe core

Evaluation: Execution Overhead (SPEC 2017)

34

Evaluated Schemes:

▪ CoR: Clear-on-Retire scheme

▪ Epoch-Rem-Iter: Epoch-Rem with iteration

▪ Epoch-Rem-Loop: Epoch-Rem with loop

▪ Counter: Counter scheme

Conclusion

35

▪ Jamais Vu is the first defense mechanism to thwart MRAs

▪ Jamais Vu includes several designs with different tradeoffs
between security, execution overhead, and complexity

▪ Epoch-Rem-Loop, the most secure design, only has an average execution
overhead of 13.8% in benign execution;
CoR, the simplest scheme, only has an average execution overhead of 2.9%

Open Source: https://github.com/dskarlatos/JamaisVu

Jamais Vu: Thwarting Microarchitectural Replay Attacks

Dimitrios Skarlatos† , Zirui Neil Zhao†, Riccardo Paccagnella,
Christopher Fletcher, Josep Torrellas

ASPLOS’21

36

University of Illinois Carnegie Mellon University

† Authors contributed equally to this work

