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Abstract
Microarchitectural side channels are a pressing security

threat. These channels are created when programs modulate
hardware resources in a secret data-dependent fashion. They
are broadly classified as being either stateful or stateless (also
known as contention-based), depending on whether they leave
behind a trace for attackers to later observe. Common wis-
dom suggests that stateful channels are significantly easier to
monitor than stateless ones, and hence have received the most
attention.

In this paper, we present a novel stateless attack that shows
this common wisdom is not always true. Our attack, called
Binoculars, exploits unexplored interactions between in-flight
page walk operations and other memory operations. Unlike
other stateless channels, Binoculars creates significant tim-
ing perturbations—up to 20,000 cycles stemming from a
single dynamic instruction—making it easy to monitor. We
show how these perturbations are address dependent, enabling
Binoculars to leak more virtual address bits in victim memory
operations than any prior channel. Binoculars needs no shared
memory between the attacker and the victim.

Using Binoculars, we design both covert- and side-channel
attacks. Our covert channel achieves a high capacity of 1116
KB/s on a Cascade Lake-X machine. We then design a side-
channel attack that steals keys from OpenSSL’s side-channel
resistant ECDSA by learning the ECDSA nonce k. Binoculars’
ability to significantly amplify subtle behaviors, e.g., order-
ings of stores, is crucial for this attack to succeed because the
nonce changes after each run. Finally, we fully break kernel
ASLR.

1 Introduction
Microarchitectural side-channel attacks are a serious security
threat to modern computer systems. In a side-channel attack,
the attacker exploits hardware resources that are shared with
the victim. Specifically, when a program’s execution mod-
ulates (i.e., changes the utilization of) hardware resources
(i.e., channels) as a function of its secret data, an attacker
can measure these modulations and from them infer the se-
cret. These attacks have caused a trust crisis in commercial
shared-hardware multi-tenant cloud environments, as well as
in daily-used personal applications like web browsers.

The ways in which hardware channels can be modulated to
pass information can be broken down along two axes. To start,
channel modulations are stateful if they leave a persistent state

change (e.g., the eviction of a line from the cache) [1,2,7,22,
23, 32, 33, 42, 49, 53, 71, 74], or alternatively stateless if they
create only temporary contention on a resource (e.g., on an
execution unit) [4, 6, 9, 24, 27, 44, 68, 69, 72]. Orthogonally,
channels can be modulated directly by the execution of the
victim instruction’s micro-ops, or indirectly by operations
that occur outside the purview of the instruction’s micro-ops.1

The large majority of channel modulations are direct (e.g.,
all of the above works). An example is a cache attack due
to the execution of a victim memory instruction that evicts a
line from the cache. On the other hand, there are a handful
of channels involving indirect operations [16, 20, 28, 29, 62,
67, 75]. Examples are “implicit” memory operations due to
hardware prefetchers or page walkers that occur beyond the
purview of micro-ops.

Historically, stateless channels have been considered more
difficult to exploit than stateful channels. Indeed, it is rela-
tively easy to monitor a stateful channel because its effect
persists after the victim instruction modulating it has retired.
Further, the contention effects of stateless channels are typi-
cally small, which exacerbates measurement noise.

Our key observation is that all known stateless channels
are due to direct operations. Accordingly, we perform the
first investigation of stateless-indirect channels by exploit-
ing interactions between in-flight operations stemming from
the hardware page walker and other sources (e.g., program
memory operations). We show how stateless-indirect chan-
nels are possible and enable powerful new attacks. We call
our channel and attack framework Binoculars.

We find that because indirect memory operations are issued
outside the purview of normal processor structures (e.g., the
reorder buffer) they “live by different rules” and exhibit novel
interactions with other memory operations. Based on these
interactions, we construct novel attack primitives.

First, we show that shared resource contention between
page walker (indirect) loads and regular (direct) memory op-
erations can cause significant delays in thread execution time
(e.g., up to 20,000 cycles) stemming from a single dynamic
instruction. This magnitude of delay dwarfs the one created
by any other microarchitectural side channel by at least two
orders of magnitude. It enables Binoculars to create new low-
noise attacks that are relatively easy to perform and observe
despite our channel being stateless.

1Indirect modulations have been called “implicit” modulations by prior
work [75].



Second, we show how the contention depends on the ad-
dresses of the memory operations involved. We show that this
address dependence does not only apply to high-order address
bits (e.g., the page number) or lower-order address bits (e.g.,
the bits that map the address to a cache set) but also to intra
cache line address bits and across address spaces. In fact, we
show that Binoculars can leak more bits of a victim’s (virtual)
memory address than any prior channel across address spaces.

Using the above attack primitives, we perform end-to-end
attacks on security-critical programs. To start, we design
and optimize a covert channel using Binoculars’ underlying
stateless-indirect channel that can achieve a high capacity of
1116 KB/s on a Cascade Lake-X machine. We then design
a side-channel attack that steals keys from OpenSSL’s side-
channel resistant ECDSA by learning the ECDSA nonce k.
Here, the nonce is computed by an implementation of the
Montgomery ladder algorithm that is hardened against timing
side channels. Binoculars is able to amplify subtle nonce-
dependent behaviors occurring during execution into large
timing delays that can be measured with low noise. This is
critical for the attack to succeed, since each run of ECDSA
uses a different nonce k. Finally, we fully break kernel ASLR
(KASLR).

Contributions. This paper makes the following contributions:
• We investigate and demonstrate the first stateless-indirect
channel. It is based on implicit loads issued by the page walker.
The resulting attack framework, Binoculars, has a high signal-
to-noise ratio and leaks a wide range of virtual address bits.
• We design and implement two Binoculars attack primitives.
One leaks the byte offset of a store within the page. The other
leaks the full virtual page number of a TLB-missing request.
• We demonstrate end-to-end attacks on real hardware, which
include extracting the nonce k in ECDSA with a single victim
run and fully breaking KASLR.

2 Background

Microarchitectural Side Channels. In a microarchitectural
side-channel attack, an attacker learns secret information from
a victim program by monitoring some microarchitectural
resource—e.g., a cache, branch predictor or execution port—
that the attacker shares with the victim, and which the victim
uses in a secret-dependent way. Channels can be classified
along two axes [3]: stateful vs. stateless and direct vs. indirect.

A stateful channel occurs when the victim’s use creates
persistent changes in the shared resource, which can be moni-
tored by the attacker afterwards. An example is a cache side
channel [49, 54, 71]. A stateless channel occurs when the
changes in the resource are temporary. To see the change, the
attacker has to physically contend for the resource during the
victim’s use. An example is port contention [4, 9, 27].

A direct channel is created directly by a victim program
instruction. An example is a load that causes a cache line
fill [71] or an eviction [49]. An indirect channel is created by

operations that occur outside the victim program instructions.
An example is cache state changes caused by a program-
invisible hardware prefetcher.

Out-of-Order Execution. Dynamically-scheduled proces-
sors execute data-independent instructions in parallel [65],
out of program order. Instructions are dispatched to reserva-
tion stations (RS) in program order, where they await execu-
tion. An instruction becomes ready to execute once its input
operands have been computed. In each cycle, a hardware
scheduler picks a subset of ready instructions and issues them
to execution units. After they execute, their outputs become
available to dependent instructions. Instruction retirement,
where the instruction finally frees up its pipeline resources, is
done in program order. In-order retirement is implemented by
queuing instructions into a FIFO queue called a reorder buffer
(ROB) [38] in program order, and retiring an instruction once
it reaches the ROB head.
Page Tables in x86. The hardware performs virtual to physi-
cal address translation by first partitioning the virtual address
into a page number and an offset, and then mapping the virtual
page number to a physical page number using a page table
data structure created by the operating system (OS). In x86-
64, the page table is a 4-level radix tree that supports multiple
page sizes. We focus on the basic case of 4 KB pages. A page
table search is called a page walk and is done by a hardware
unit called the page walker on a TLB miss.

Figure 1a shows the page table structure and the page walk
process. Address translation uses four levels of page tables,
which we refer to as PL4, PL3, PL2, and PL1. The root level,
PL4, is pointed to by the CR3 register. Each page in the page
tables contains an array of 512 8-byte page table entries
(PTEs). The virtual page number is decomposed into four
9-bit PL indexes, each of which selects a PTE from its corre-
sponding level of the tree. Each PTE holds the physical page
number of the next level of the tree or, at the lowest level, the
final translation. Overall, to perform a page walk, the page
walker issues four loads in total.

Because the 4-level page table supports only a 48-bit virtual
address space, the 64-bit virtual addresses in x86-64 must be
canonical—meaning that bits 64–48 are equal to bit 47. The
address space is divided into two equal halves [19]. The lower
canonical half is user space, while the upper canonical half is
used by the OS kernel. An unprivileged user can only allocate
pages in the lower canonical half.

To speed up the virtual address translation process, x86 pro-
cessors cache address translations in two levels of translation
lookaside buffers (TLBs). The first level TLBs (iTLB and
dTLB) cache instruction and data translations, respectively.
The second level TLB (sTLB) is larger and caches both in-
struction and data translations. A page walk is triggered if a
translation request misses in all levels of TLBs. To minimize
the TLB-miss penalty, the page walker loads check the cache
hierarchy and so they can benefit from cached PTEs.



False Dependences in the L1D Cache. On Intel processors,
the L1D cache is virtually indexed and physically tagged. It
uses part of the virtual address (VA) bits (e.g., bits 11-6) as
the index to find the cache set and uses the physical address
(PA) tag to select the cache line within the set. This design
enables the L1D cache to be accessed in parallel with the TLB
translation.

The L1D cache uses the 12 least significant bits (i.e., the
offset part) of the VA to detect potential dependences be-
tween multiple reads and writes that are issued to it, before
their translations finish. If a read and a write target addresses
with the same offsets (i.e., their 12 least significant bits are
the same), then a dependence is possible. When a potential
dependence is detected, one of the requests is squashed and
will retry. The L1D cache thus conservatively prevents si-
multaneously reading and writing of addresses that have the
same 12 least significant bits (i.e., they are 4K-aliasing) even
though there might be no dependence between the requests
(i.e., the dependence may be a false dependence) [19, 44, 72].
Depending on the implementation, the dependence check can
be done at a word granularity [44]—i.e., the read and the write
addresses only need to share bits 11–2 to be counted as poten-
tially dependent. In this paper, we say that two addresses have
4K-aliasing if they have the same bits 11–2. These addresses
are subject to false dependences.

3 Threat Model
We consider an attacker who is an unprivileged user on a
hypertheaded multi-core x86 machine. The attacker’s goal is
to learn some of the bits of the address operand of specific
memory load/store instructions in some victim, through lo-
cal hardware resource utilization changes modulated by the
victim. The victim may be another process (belonging to a
different user) or the OS kernel. Either way, the victim does
not share virtual or physical memory with the attacker pro-
cesses. We assume that the attacker knows the contents of the
victim’s executable.

We assume a system configuration similar to that in prior
cross-hyperthread side-channel attacks [4, 9, 28, 44, 72]. The
system has Hyper-Threading enabled, and the attacker can
interact with the OS scheduler to run its attack process on a
hyperthread that shares the same physical core with the victim
hyperthread. For attacks that rely on observing delays in the
victim’s execution, we do not assume a cooperative victim
that times and reports its own execution.

4 The Binoculars Attack
The CacheBleed [72] and MemJam [44] attacks have shown
that existing processors are vulnerable to false dependences
between writes issued by a thread and reads issued by another
thread (Section 2). In this paper, we show, for the first time, an
attack that exploits false dependences between writes issued
by a thread and reads issued by the hardware during a page
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Figure 1: Overview of the Binoculars attack.
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Figure 2: Distribution of the latency of a TLB-missing access
while the sibling hyperthread keeps issuing writes whose
address may or may not alias with the page walker loads. The
data is measured on an Intel Skylake-X.

walk triggered by a second thread. We call the new attack
Binoculars.

Compared to the prior false dependence attacks, we will see
in this section that Binoculars is both easier to setup and leaks
new bits. Specifically, if the attacker is the writer, Binoculars
can leak the virtual page number of the victim access that
triggers the page walk. On the other hand, if the attacker is the
thread that triggers the page walk, Binoculars can leak page
offset bits 11-3 of the address written by the victim. Note, the
victim and attacker do not share an address space.

To demonstrate Binoculars, we run experiments on Intel
Xeon W-2245 (Cascade Lake-X), Intel i7-7820X (Skylake-
X), and Intel Xeon E3-1246 v3 (Haswell-EP) platforms. One
hyperthread reads from an address that causes a miss in both
TLB levels and hence triggers a page walk. Recall that, during
the page walk, the hardware issues up to four loads to the data
cache hierarchy, corresponding to the requested entries in the
four page table levels. In Figure 1a, the four page levels are
called PL4, PL3, PL2, and PL1, and the actual addresses read
are RA4, RA3, RA2, and RA1.

The other sibling hyperthread keeps writing to an address
WA. We perform two experiments: one where the WA has
a false dependence with one of the RAi, and one where it



does not. Following past work [44, 72], a false dependence is
obtained with 4K-aliasing — in our case, when bits 11-3 of
the two addresses are the same because we issue 8-byte loads.
We repeat each experiment 100 times, measuring the time
taken by the reader hyperthread to complete its TLB-missing
access.

Figure 2 shows the histogram of measured read latencies
in the two experiments running on a Skylake-X. To make the
histogram readable, we plot the X axis in logarithmic scale.
From the figure, we see that when the page walker loads
and the store are not 4K-aliasing, the page read takes about
100 cycles (including the time for reading the timestamp).
However, when there is 4K-aliasing, the latency goes up to
≈20,000 cycles (or 104.3 in the figure). The page walker
load is stalled and delayed for a long time. This very obvious
difference in latency is exploited by Binoculars to leak address
bits.

In the rest of this section, we discuss the two directions
of the Binoculars attack: when the attacker triggers the page
walk (Section 4.1) and when it performs the repeated writes
(Section 4.2).

4.1 Leaking the Page Offset of a Store Address
In this attack, the attacker triggers the page walk and the
victim performs repeated writes to the same address. The
attacker keeps changing the address of the page that triggers
the page walk and measures the latency of an access to the
page. When the attacker observes a high access latency, it
can deduce that the page offset of a page walk read and of
the write have a false dependence. Since, in this attack, the
information flows from victim stores to attacker page walker
loads, we call this primitive the store→load channel.

To understand the attack, consider Figure 1b, which shows
the addresses of the four loads issued during a page walk.
Given a TLB-missing access to a virtual address VA, the
hardware first reads address RA4, whose address bits 11-3
are equal to VA bits 47-39. After that, the page walker reads
address RA3, whose 11-3 address bits are equal to VA bits 38-
30. Then, the page walker reads RA2 and RA1. Bits 2-0 of RA4,
RA3, RA2, and RA1 are 000 because these loads read 8-byte
page table entries, which are aligned to 8-byte boundaries. If
any of these four addresses has a false dependence with the
address WA written by the victim, a long latency access ensues.
The false dependence occurs when two addresses have the
same bits 11-3 because we issue 8-byte loads—i.e., the two
addresses have 4K aliasing (Section 2). Hence, this attack can
learn bits 11-3 of the victim store address, which are the page
offset bits with sub-cacheline granularity (Figure 1c).

Figure 3 shows simplified programs that demonstrate the
store→load channel. The demonstration extracts bits 11-3 of
a store address in a victim program. As shown in Figure 3a,
the victim program allocates a page and keeps writing to it at a
fixed page offset (i.e., 0x528), which is a secret. As shown in
Figure 3b, the attacker program first allocates 512 continuous

1 const u32 secret_offset = 0x528;
2 char *page = mmap(NULL, PAGE_SIZE, ...);
3 while (true) {
4 page[secret_offset] = 0xff;
5 }

(a) Victim program.

1 const u32 npages = 512;
2 u32 latencies[npages];
3 const u64 size = PAGE_SIZE * npages;
4 char *base_page = mmap(NULL, size, ...);
5 for (u32 i = 0; i < npages; i++) {
6 char *page = base_page + i * PAGE_SIZE;
7 invalidate_tlb(page);
8 u64 t_start = read_timestamp();
9 maccess(page);

10 u64 t_end = read_timestamp();
11 u32 PL1_index = ((u64)page & 0x1ff000) >> 12;
12 latencies[PL1_index] = t_end - t_start;
13 }

(b) Attacker program.

Figure 3: Simplified programs that demonstrate the
store→load channel.
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Figure 4: Demonstration of the store→load channel on a
Skylake-X.

pages (Line 4). The page table entries (PTEs) of these 512
pages fill a 4KB PL1 page, since each PTE is 8 bytes. Then,
for each page, the attacker flushes the page’s translation from
TLBs and issues an access to the page, which triggers a page
walk. The page walk of one of the pages will issue a load to a
RA1 address whose bits 11-3 match bits 11-3 in the victim’s
WA address. Because of this 4K aliasing, the latency of the
access to this particular page will be higher.

We run both programs on two different hyperthreads of the
same physical core. For each page of the attacker, we measure
the page access latency 100 times and use the average value.
The page walker read of each of the 512 pages tests a different
8-byte aligned address offset within a 4KB page. Figure 4
shows the average latency measured at each PL1 offset on a
Skylake-X. As the plot shows, the page access latencies are
very low at most PL1 offsets. When the PL1 offset gets close
to the victim’s secret offset, 0x528, the access latency starts
to increase, and it reaches its peak value when the PL1 offset
exactly matches the secret offset. We obtain similar results on
a Haswell-EP and a Cascade Lake-X.



The reason why the peak is not sharper is that page walker
loads can also be stalled by stores that access the same L1
cache set. In this case, the two addresses only need to share
bits 11-6. As we will see in Section 5, this second type of
false dependence is harder to induce.

To maximize the number of different offsets monitored by a
single TLB-missing access, the attacker can carefully allocate
a page at an address that has a different PL offset at each
level. In this case, as shown in Figure 1b, the attacker can
theoretically monitor up to four different offsets, using the
page walker loads from PL4, PL3, PL2, and PL1. However, in
the current implementation of x86-64, an unprivileged user
can only allocate pages in the lower half of the 64-bit VA
space (Section 2), which means that the attacker does not
have full control of the PL4 index (i.e., bits 47-39 of the VA)
and cannot use it to monitor arbitrary store offsets.

In addition, since we assume an unprivileged attacker (Sec-
tion 3), the attacker cannot use privileged instructions to flush
the TLB. Instead, to evict a target translation from the TLB,
she has to build an eviction set of pages. Note that the hash
function used in Skylake-X to map a page to a set in the
TLB uses the PL1 index and part of the PL2 index (i.e., bits
26-12 of the VA) [28]. As a result, to build an eviction set,
the attacker uses pages with different PL3 indexes but the
same PL2 and PL1 indexes. Consequently, the attacker cannot
typically use PL3 indexes to monitor store offsets, and has to
limit herself to monitoring two offsets (using PL2 and PL1
indexes) with each TLB-missing access.

4.2 Leaking the Virtual Page Number of the
Address of an Access

In this attack, the attacker repeatedly stores to a given offset
in a page and the victim suffers a TLB miss that triggers
a page walk. The attacker keeps changing the page offset
of the store address and observes the victim’s performance.
When the victim’s access latency is high, one of the page walk
loads is 4K-aliasing with the attacker’s store. The attacker can
then learn the PL index of a level of the page table entry. By
continuing to change the page offset of the store address, the
attacker can recover the PL indexes of all the different page
levels. As a result, as we will see later, the attacker will be able
to learn the full virtual page number (VPN) of the victim’s
TLB-missing memory accesses (i.e., bits 47-12). Because
the information in this attack flows from victim page walker
loads to attacker stores, we call this primitive the load→store
channel.

The process of the attack is shown in Figure 1b. A page
walk issues, in the worst case, loads to addresses RA4, RA3,
RA2, and RA1. Each of these addresses includes, in bits 11-3,
a portion of the VA of the page accessed. When one of these
addresses has the same bits 11-3 bits as the attacker’s store
address (WA)—i.e., it 4K-alias with WA—the victim’s access
suffers a long latency. Based on the observed latency, the
attacker can deduce the four sets of 11-3 bits in some order.

1 const u64 addr = 0x5d21ca821000ull;
2 char *page = mmap(addr, PAGE_SIZE, ...);
3 while (true) {
4 wait_for_attacker();
5 invalidate_tlb(page);
6 u64 t_start = read_timestamp();
7 maccess(page);
8 u64 t_end = read_timestamp();
9 u64 t_diff = t_end - t_start;

10 // signal the attacker process; pass t_diff
11 signal_attacker(t_diff);
12 }

(a) Victim program.

1 const u32 nindexes = 512;
2 u32 latencies[nindexes];
3 char *page = mmap(NULL, PAGE_SIZE, ...);
4 for (u32 idx = 0; idx < nindexes; idx++) {
5 u32 offset = idx << 3;
6 signal_victim(); // signal the victim process
7 while (wait_for_victim()) {
8 page[offset] = 0xff;
9 }

10 latencies[idx] = get_victim_latency();
11 }

(b) Attacker program.

Figure 5: Simplified programs that demonstrate the
load→store channel.
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Figure 6: Demonstration of the load→store channel on a
Skylake-X.

With some additional experiments that will be detailed later,
the attacker can put together the whole VPN of the victim
access (Figure 1c).

Figure 5 shows simplified programs that demonstrate the
load→store channel. To measure the latency of the victim’s ac-
cess, the code unrealistically assumes that attacker and victim
processes can communicate via shared memory to synchro-
nize, and that the victim measures its own latency and reports
it to the attacker process. This setting is for demonstration
only. A realistic setting will be shown in Section 8, where the
attacker only relies on the end-to-end execution time of the
victim.

The victim program (Figure 5a) first allocates a page at vir-
tual address 0x5d21ca821000, which corresponds to indexes
to PL4, PL3, PL2, and PL1 equal to 0x0ba, 0x087, 0x054, and



1 // Attacker program, port contention version
2 const u32 nindexes = 512;
3 u32 latencies[nindexes];
4 char *page = mmap(NULL, PAGE_SIZE, ...);
5 for (u32 idx = 0; idx < nindexes; idx++) {
6 u32 offset = idx << 3;
7 u64 t_start = read_timestamp();
8 for (u32 i = 0; i < 10000; i++) {
9 page[offset] = 0xff;

10 }
11 u64 t_end = read_timestamp();
12 latencies[idx] = t_end - t_start;
13 }

Figure 7: Port-contention version of the load→store channel
attack program.
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Figure 8: Demonstration of the load→store channel with the
port-contention version on a Skylake-X.

0x021, respectively. Then, the victim program enters a loop
where, in each iteration, the victim: (i) waits for the attacker
to signal it, (ii) invalidates the translation of the page from
the TLBs, (iii) accesses the page and measures the access la-
tency, and (iv) signals the attacker, passing the access latency.
The attacker program (Figure 5b) first allocates buffers for
latency results and a page to write to. Then, it enters a loop
that iterates over all the possible 512 indexes of page table
entries (PTEs) in a page. For each of the resulting PL address
offsets, the attacker: (i) signals the victim process, (ii) keeps
writing to an address at the PL offset in the page until the
victim sends it a signal, and (iv) receives the latency of the
victim access and saves it.

We run both programs on two hyperthreads of a physical
core. For each PL index, we measure the latency 100 times
and save the average value. Figure 6 shows the resulting
average latency for each PL index on a Skylake-X processor.
Looking at the figure, we see there are four clear latency
spikes. They are at indexes 0x021, 0x054, 0x087, and 0x0ba.
These four spikes correspond to the four 9-bit PL indexes of
the victim page. We obtain similar results on a Haswell-EP
and a Cascade Lake-X.

From these latency results alone, we cannot determine
which spike corresponds to which page table level. The full
VPN is one of the permutations of these four indexes. There
are multiple strategies to identify the correct permutation.
For example, if we know which memory region the victim

accesses (e.g., heap or stack), we can identify the possible
PL4 or even PL3 indexes, since these memory regions usually
have unique ranges of high-order VA bits. If the victim also
happens to access neighboring pages (i.e., pages that differ in
PL1 indexes), the attacker should observe nearby spikes, and
these spikes correspond to PL1 indexes. After determining
the PL4, PL3, and PL1 indexes, we know which one is the
PL2 index. Last, as will be shown in Section 8, if the memory
access is to a global variable, the PL1 index can be derived
from the variable’s offset in the segment.

We can easily redesign the attack so that attacker and victim
do not need to synchronize, and the victim does not need to
measure the latency of its own accesses. Instead, the attacker
measures the latency of its stores. The idea is that, when the
victim’s page walker load is stalled for a long time due to 4K
aliasing, the victim’s pipeline is blocked, and shared resources
are freed-up for the attacker. As a result, the attacker sees
lower latency for its own stores because of less port contention.
Consequently, in Figure 7, we change the code from Figure 5
so that, in each iteration, the attacker measures the latency of
issuing 10,000 stores—and neither synchronizes nor receives
any latency measurement from the victim. This is a more
realistic design. Figure 8 shows the average latency of those
10,000 stores at different indexes on a Skylake-X. It is clear
that latencies drop at the victim’s PL indexes.

4.3 Extensions
Cross Virtual Machine Attack. Binoculars also works if
attacker and victim are in two different virtual machines that
share the same physical core. Because in a virtualized en-
vironment, a TLB-missing access also triggers page walker
loads, which are subject to contention with stores from the
sibling thread. To verify this, we repeat our experiments in a
virtualized environment with QEMU-KVM (4.2.1) [56] on
Skylake-X. The attacker and victim programs run in two dif-
ferent virtual machines that share the same physical core and
run Ubuntu 20.04 LTS (5.4.0-105-generic). Our experiments
show results that are similar to the ones in a non-virtualized
environment, and thus demonstrate Binoculars can be used
for cross virtual machine attacks.
Other Paging Schemes. The previous discussion is mainly
focused on a 4-level paging design, which issues four page
walker loads to translate a VPN. If other paging schemes (e.g.,
huge page, 5-level paging) are used, Binoculars will still work
with different attacker capabilities.

For the store→load channel, the attacker has no incentive
to use huge pages: doing so would reduce the number of
page walker loads and correspondingly the number of page
offsets that can be observed in a single page walk. Using
5-level paging, on the other hand, can boost the attack as one
page walk can monitor five store offsets. For the load→store
channel, using huge pages reduces the number of low-order
VPN bits that an attacker can extract. But it is still possible to
attack (kernel) ASLR, as its entropy usually resides in high-



Table 1: Comparing the characteristics of different side-channel attacks.

Attack Timing
Difference*

Virtual Address
Bits Leaked

Leakage
Granularity

Cross
Address Space? Cross Core?

PortSmash [4], SMoTherSpectre [9] 10−1 cycles n/a µOps Yes No
TLBleed [28] 101 cycles Bits 26-12† Memory page Yes No
CacheBleed [72], MemJam [44] 101 cycles Bits 11-2 Sub-cacheline Yes No
Prime+Probe [49] 102 cycles n/a Cache set Yes Yes
Flush+Reload [71] 102 cycles Offset in segment Cacheline No Yes
AVX2-Based [61] 102 cycles n/a AVX2 instruction Yes No‡

Binoculars store→load channel 104 cycles Bits 11-3 Sub-cacheline Yes No
Binoculars load→store channel 104 cycles Bits 47-12 Memory page Yes No
* Magnitude of the maximum timing difference that can be caused by a single dynamic instruction or operation that the attack uses.
† Applicable to an Intel Skylake-X platform [28]. Actual bits may vary on different microarchitectures.
‡ Our threat model (Section 3) only considers local hardware resource utilization changes caused by the victim. Since AVX2-based

attacks exploit power management mechanisms that only affect each individual physical core, we do not consider it as a cross-core
channel under our threat model.

order VPN bits (see Section 8). Using 5-level paging, the
attacker will observe five latency spikes associated with each
level of translation, instead of four spikes shown in Figure 6
and 8, which makes finding the correct permutation of spikes
and recover the full VPN harder.
Other CPUs. We believe the root cause of the Binoculars
attack is related to Intel’s optimization of page walker loads
(see Section 5 and Appendix A). Therefore, Binoculars is
likely exclusive to Intel processors. For example, the same
experiments on an AMD-EPYC-7502 processor show that it
does not exhibit the Binoculars channel.

4.4 Discussion
Table 1 compares the characteristics of Binoculars and ex-
isting side-channel attacks. From left to right, we compare:
(i) the maximum timing difference that can be induced by a
single dynamic instruction or operation that the attack uses,
(ii) the virtual address bits leaked, (iii) the granularity of the
leakage, and whether the attack is effective (iv) across address
spaces or (v) across cores.

The second column shows the first advantage of Binocu-
lars: its contention effect is very strong. A single dynamic
instruction can create timing differences that are several or-
ders of magnitude higher than in any other conventional side-
channel attack. For example, with port contention, a dynamic
instruction can cause a latency increase equal to a fraction
of a cycle on average [4, 9]. Therefore, an attacker requires
thousands of dynamic instructions to magnify the effects, or
tens of thousands of replays to denoise the channel [63]. In
CacheBleed [72] and MemJam [44], a dynamic instruction
exploiting a false dependence causes a 10-cycle average la-
tency increase. In side-channel attacks that rely on timing
differences between cached and uncached accesses such as
TLBleed, Prime+Probe, and Flush+Reload, the differences
range from tens of cycles [28] to a few hundred cycles [49,71].
AVX2-based side channel that is exploited in NetSpectre [61]
can also cause a timing difference of a few hundred cycles. In-
stead, a Binoculars access can trigger a stall of up to 20,000 cy-
cles. This property makes Binoculars more resilient to noise,
which means that it can recover secrets with fewer runs and

with a higher confidence. Also, because of the long duration
of the stall, it is possible to observe the contention even if the
attacker cannot measure the time very precisely—e.g., due to
lacking a high-resolution timer.

The third column of Table 1 shows a second advantage
of Binoculars: it leaks a wide range of virtual address (VA)
bits. The column lists the VA bits leaked by each attack. For
example, TLBleed [28] can recover the bits that are used by
TLB hash functions (i.e., bits 26-12 on a Skylake-X for the
sTLB). Hence, TLBleed can observe only a victim’s memory
accesses at a page granularity, and cannot extract the full VPN.
CacheBleed [72] and MemJam [44] recover low-order intra-
cacheline bits (i.e., bits 11-2), but miss out on high-order bits.
In Flush+Reload [71], because of ASLR, a shared memory
segment can be allocated at different VA in different processes.
As a result, Flush+Reload can only recover VA bits that are
not subject to ASLR, namely the offset to the base of the
segment—at a cache line granularity. With Binoculars, the
attacker can learn VA bits 11-3 with the store→load chan-
nel and bits 47-12 (i.e., the full VPN) with the load→store
channel.

The fourth column of Table 1 shows the leakage granularity
of each attack. Binoculars provides sub-cacheline resolution
with the store→load channel and page-level granularity with
the load→store channel. The fifth and sixth columns show
whether the attack works across address spaces and across
physical cores. Since Binoculars requires no shared memory,
it can attack a victim running in a different address space.
However, it cannot attack a victim on a different core.

Finally, Binoculars has a third, although not unique, ad-
vantage: it does not require complex state preparation. For
example, most cache-based side-channel attacks require the
victim data to be present at a given level of the memory hier-
archy before the attack. For that, the attacker has to carefully
manipulate cache state, which is slow, sometimes complex,
and requires fine-grained synchronization with the victim pro-
cess. Binoculars only needs page walkers to trigger loads.
Contention occurs regardless of what level in the cache hier-
archy the page walker loads read from.



5 Root Cause Analysis

The resource contention observed by a single Binoculars ac-
cess can reach up to 20,000 cycles on a Skylake-X processor.
The magnitude of this contention has no precedent in existing
contention-based attacks. For this reason, we explored its root
cause, relying on (sometimes undocumented) performance
counters and Intel’s patents, similar to prior work [35, 45, 60].

We find that the contention is the result of an optimization
in the Intel processor hardware that issues page walker loads
as “stuffed” loads. These loads bypass the RSs and the ROB
to avoid their scheduling latency [26]. We hypothesize that
this optimization has an unexpected side effect: when the
implicit stuffed loads conflict with explicit data stores in the
L1D cache, the scheduler cannot detect such conflicts. Conse-
quently, the scheduler simply allows the explicit data stores
from one hyperthread to run “at full speed”, without realizing
that these stores are repeatedly squashing the stuffed loads
from the other hyperthread. Hence, the page walker suffers
from resource starvation and eventually triggers a mechanism
that aborts and restarts the page walk—presumably with a
higher priority.

Our further experiments lead us to conclude that both set
conflicts (i.e., page walker loads and data stores trying to
access the same L1D set) and false dependences (i.e., page
walker loads and data stores 4K-aliasing with each other)
can cause stuffed loads to be squashed by data stores in the
L1D cache. Further, the impact of these two events depends
on the writer thread’s behavior. Specifically, when the writer
thread stores at a high frequency, set conflicts occur frequently
and dominate false dependences. Instead, when the store fre-
quency is reduced, false dependences begin to dominate set
conflicts. Appendix A summarizes our findings.

6 Binoculars Covert Channel
A covert channel is a communication channel that allows two
cooperating parties to bypass system policies to communi-
cate with each other. Most covert channels are synchronous,
where the transmission process is divided into time epochs
for synchronization. In every epoch, the sender encodes one
or several bits of information by changing microarchitectural
states, while the receiver decodes the information by observ-
ing the changes. Depending on the mechanism used by the
covert channel, in every epoch, after the receiver decodes the
transmission, it may need to precondition the channel for the
next epoch [10]. To keep the sender and the receiver well-
synchronized, an epoch has to be long enough to cover the
encoding and decoding operations, and the potential precon-
ditioning operations.

A robust metric to measure a covert channel’s transmission
capability (i.e., its raw throughput and bit-error rate) is the
channel capacity [43]. This metric measures the highest rate
of reliable information transmission that a communication
channel supports. It is computed by r× (1−H(p)), where

r is the raw throughput of the channel, p is the probability
of a bit error, and H is the binary entropy function. Using
this formula, we can see that a high-capacity covert channel
requires a high raw throughput (which is determined by the
length of an epoch and the number of bits it can transmit per
epoch) and a low bit-error rate (which is determined by the
noise in the channel). This metric is also used in some prior
work [47, 50, 55].

A straw man Binoculars covert channel works as follows.
Before the transmission, sender and receiver agree on a page
offset. To send a bit 1, the sender keeps writing to the agreed
offset until the end of the epoch. To send a bit 0, the sender
does nothing and waits for the next epoch. To decode the
information, the receiver issues and times a TLB-missing
memory access to a target page, whose page walk includes
a load that 4K-aliases with the sender write. If the receiver
measures a high access latency, the sender is sending a bit 1;
otherwise, it is sending a bit 0. After that, to precondition the
channel, the receiver accesses a TLB eviction set to evict the
target page from the TLB.

Unfortunately, this straw man scheme does not achieve a
high channel capacity. Since the page walker loads can be
stalled for up to 20,000 cycles (Section 4), an epoch has to be
longer than that, which drastically limits the channel capacity.
Fortunately, in practice, such large stall times are unneces-
sary to build a low error-rate covert channel. Therefore, we
carefully tune the number of stores that are executed by the
sender. We want to make sure that these stores can create
reliably-high timing differences on the receiver side while
keeping the epochs short.

To further improve the channel capacity, on the receiver
side, we build a large TLB eviction set using methods similar
to ones in [28, 64]. At every epoch, the receiver chooses the
target page from that set. Moreover, the chosen target page is
different from the target page used in the previous epoch. With
this design, we can ensure that the read access to the target
page not only decodes the information, but also evicts the
translation of the page that will be used as the target in the next
epoch. This design eliminates the need of preconditioning the
channel through explicit eviction of TLB entries. Hence, we
can support an even shorter epoch.

Finally, we also make sure that all the pages in the TLB
eviction set are mapped to the same physical page. As a result,
accessing them one after another does not evict their data from
the caches, which removes any noise due to cache misses.

We evaluate the average capacity of the Binoculars covert
channel on Intel Haswell-EP, Skylake-X, and Cascade Lake-X
platforms. In each platform, we run the sender and the receiver
for 100 times to transmit a 1MB-long randomly-generated
message. Table 2 lists the channel capacity of Binoculars on
each platform, as well as the capacities of prior covert chan-
nels. From the table, we see that on a Haswell-EP, Binoculars
attains a moderate channel capacity of 177 KB/s with a 1.2%
bit error rate. On a Skylake-X, the channel capacity increases



Table 2: Comparison of covert channels with average capacity
higher than 100 KB/s.

Attack Channel
Capacity

Cross
Address Space?

Cross
Core?

Streamline [58] 1733 KB/s No Yes
Lord of the Ring(s) [50] 518 KB/s Yes Yes
Take-a-Way [41] 505 KB/s Yes No
Flush+Flush [32] 463 KB/s No Yes
L1 Prime+Probe [54] 400 KB/s Yes No
Flush+Reload [32, 71] 298 KB/s No Yes
Binoculars (Cascade Lake-X) 1116 KB/s Yes No
Binoculars (Skylake-X) 622 KB/s Yes No
Binoculars (Haswell-EP) 177 KB/s Yes No

to 622 KB/s and the bit error rate decreases to 0.9%. Finally,
on a Cascade Lake-X, which is one of the latest Intel server
microarchitectures, the capacity reaches 1116 KB/s with a
low bit error rate of 0.6%.

The main reason for the large channel capacity variations
across different platforms is the processor performance. In
newer generations, processors can execute the same number
of stores in a shorter period of time, and these stores can also
cause more contention effects. As a result, a newer processor
requires fewer stores to cause enough contention and a shorter
epoch to execute them. For example, on a Haswell-EP, we
need to execute 380 stores on the sender side every epoch. On
a Cascade Lake-X, the number is reduced to only 80 stores,
which only require a 420-cycle epoch.

Table 2 also lists the characteristics of existing covert chan-
nels with a channel capacity greater than 100 KB/s. Among
all these channels, Binoculars has the second highest channel
capacity2 (on Skylake-X and Cascade Lake-X), and is only
behind Streamline [58]. Although Streamline has a higher
channel capacity and supports cross-core communication,
Binoculars does not require shared memory thus works across
address spaces.

7 Attacking Montgomery Ladder and ECDSA

We use Binoculars to obtain the private key used by
OpenSSL’s ECDSA implementation. Our attack targets the
Montgomery ladder, a widely used optimization for comput-
ing scalar multiplication on elliptic curves [39]. OpenSSL’s
ECDSA implementation uses the Montgomery ladder to cal-
culate the point k×G during signing, where the scalar k is a
nonce (i.e., an ephemeral key). Our goal is to learn the nonce
k, which together with the signature can be used to derive the
private key used for signing [37, 46].

Figure 9 shows the Montgomery ladder implementation
used in OpenSSL 1.0.1e. The code iterates over the bits of
k. In each iteration, it performs an elliptic curve point addi-
tion and doubling by calling the functions gf2m_Madd and
gf2m_Mdouble, respectively. The current bit, ki, determines

2Parallel to our work, TLB;DR [64] built a more performant covert chan-
nel with an average channel capacity of 1375 KB/s.

3The code is from function ec_GF2m_montgomery_point_multiply at
crypto/ec/ec2_mult.c:268 [48].

1 for (; i >= 0; i--) {
2 word = scalar->d[i];
3 while (mask) {
4 if (word & mask) { // checks ki
5 // compute (x1,z1)=(x1/z1)+(x2/z2)
6 if (!gf2m_Madd(group,&point->X,x1,z1,x2,z2,ctx))
7 goto err;
8 // compute (x2,z2)=2*(x2/z2)
9 if (!gf2m_Mdouble(group, x2, z2, ctx))

10 goto err;
11 } else {
12 if (!gf2m_Madd(group,&point->X,x2,z2,x1,z1,ctx))
13 goto err;
14 if (!gf2m_Mdouble(group, x1, z1, ctx))
15 goto err;
16 }
17 mask >>= 1;
18 }
19 mask = BN_TBIT;
20 }

Figure 9: Montgomery ladder implementation used in
OpenSSL 1.0.1e3.

the big number variables written to in each step. If ki = 1,
(x1,z1) is added to and (x2,z2) is doubled; if ki = 0, the or-
der is reversed. In the following, we denote function calls
to gf2m_Madd and gf2m_Mdouble under the ki = 1 direction
as Madd1 (Line 6) and Mdouble1 (Line 9), and the calls un-
der the ki = 0 direction as Madd0 (Line 12) and Mdouble0
(Line 14).

While this implementation is data-oblivious to the sequence
of operations and end-to-end timing, it nevertheless has a
secret-dependent order of stores to (x1,z1) and (x2,z2). Since
stores to these two pairs of variables have different page
offsets, Binoculars can identify the store order by monitoring
stores to these offsets, and thereby recover the ki values.

Challenge. The nonce k in ECDSA changes at every run and
never repeats. An attacker only has one chance to capture
a k and cannot rely on repeated runs to de-noise the chan-
nel. As a result, the attacker needs a side channel with an
extremely high signal-to-noise ratio to exfiltrate k with a sin-
gle victim run. There exist partial key recovery techniques for
ECDSA [8,21,25,46] that allow an attacker to reconstruct the
private key from multiple signatures and part of correspond-
ing ks. However, most of them assume that the known parts of
ks are error free [25], or at least that they have a low bit-error
rate (e.g., less than 2% [8, 21]).

7.1 Attack Method

We assume the attacker can obtain a signature from the victim
(e.g., by making a network request) and use Binoculars to
monitor the victim’s signing execution. The attacker’s process
does not need to share any physical memory with the victim.

Our attack infers the value of ki using the store→load chan-
nel to monitor the order of stores to (x1,z1) and (x2,z2). To
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Figure 10: Page offsets of stores in Madd0, Mdouble0, Madd1,
and Mdouble1. Red circles highlight stores to variable x2. The
traces are collected with Intel Pin [57] on a Skylake-X.

avoid monitoring four variables, we only monitor stores to
a single variable (e.g., x2). We infer the value of ki based on
whether the stores happen in the first half of a Montgomery
ladder iteration (in which Madd0 executes) or in the second
half of an iteration (in which Mdouble1 executes).

Crucially, we design a realistic end-to-end attack that does
not assume synchronization between victim and attacker, such
as knowing when Montgomery ladder iterations begin and
end. Our attack method contains the following three steps:

Step 1: Identify Target Store Page Offsets. Finding store
page offsets to monitor can be done offline. Page offsets
depend only on memory allocation details, which are fixed for
a given environment. (In particular, they are independent of
ASLR, which only randomizes high-order bits of addresses.)
This means that running the same OpenSSL as the victim
in the same environment is sufficient for the attacker to find
suitable offsets for using in a later online attack.

To minimize noise, we prefer offsets that are exclusively
used by one of the four variables (e.g., x2). Figure 10 shows
traces of page offset stored to by Madd0, Mdouble0, Madd1,
and Mdouble1, obtained using Intel’s Pin tool [57]. The X
axis is the order of stores inside the function and the Y axis is
the page offset of each store. Stores to x2 are highlighted with
red circles. Since x2 is a big number that occupies multiple
double words, offsets of stores to x2 form a continuous descent
“slope” with a step of 8 bytes in the figure, instead of a single
point. We find that x2’s offsets are good candidates for low-
noise monitoring, as only Madd0 and Mdouble1 store to these
offsets, and only when writing to x2.

Step 2: Monitor Victim Stores. The attacker process is co-
located on the same physical core as the victim, but on a
sibling hyperthread. While the victim is signing, the attacker
process keeps recording the latency of TLB-missing loads
that monitor stores to the chosen page offsets, as well as the
timestamp of each measurement. The latency trace is then
saved for the next step.

Figure 10 shows that for a given offset of x2, only a few
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Figure 11: A snippet of measured raw latencies. Grey vertical
dashed lines indicate start of Montgomery ladder iterations.
Grey vertical doted lines are the halves of iterations. Red
crosses are the ground truth of k. Timestamps are relative to
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Figure 12: Montgomery ladder iteration boundaries predicted
by the classifier on the trace in Figure 11. Timestamps are
relative to the first Montgomery ladder iteration.

stores are executed in a short period during signing. To ob-
tain a detectable signal in the store→load channel from these
stores, we time four dependent TLB-missing loads instead
of one. Since a single TLB-missing load can monitor two
unique offsets (Section 4.1), these four loads can monitor
eight neighboring offsets of x2 to increase the chance of con-
tention. Also, because these four loads are dependent, their
contention effects are built up and observable.

Step 3: Process Signal. To recover the ki values from the
latency trace collected in step 2, we need to (1) identify when
the victim stores to x2; and (2) find boundaries of Montgomery
ladder iterations, so that we can know whether the stores are
performed in the first or second half of an iteration.

Figure 11 shows a snippet of a latency trace collected on
a Skylake-X, while the attacker monitors stores to x2. We
thus expect to see latency increases when the victim executes
Madd0 or Mdouble1. Red crosses show the ki values. Iteration
boundaries and halves are marked by vertical grey dashed
lines and thin dotted lines, respectively. The lines are plotted
by instrumenting the victim, but in a real attack, they must
be recovered by the attacker from the trace. On average, the
probing latency is around 300 cycles on the test machine.

Using the vertical lines as references, we see that when ki
is 0, there are two high latencies events in the first half of the
Montgomery ladder iteration (bits k175, k177, and k178). And
when ki is 1, high latency events occur in the second half of
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Figure 13: Violin plots of each approach’s accuracy distribution on a Skylake-X and a Cascade Lake-X. Each distribution contains
100 predictions. BLANK with predicted boundaries are omitted since the boundary predictor fails to output any meaningful data
for it. All plots except BLANK share the same Y axis range starting from 90%.

an iteration (bits k172, k174, and k176).
Not all contention effects are obvious, however (e.g., bit

k173). We therefore use a supervised machine learning model,
random forest classifier [51, 52], to predict iteration bound-
aries and ki values from the latency trace. The following
details how the model is used.
Preprocess. Because the attacker process keeps measuring
latencies without any synchronization, the trace forms an
unevenly spaced time series. We transfer the data into an
equally spaced time series by resampling the raw data at a
fixed period with linear interpolation. Since most machine
learning models work best when the data under classification
roughly follows a standard normal distribution, we normalize
the resampled latencies by subtracting the mean and then
dividing by the standard deviation.
Predict iteration boundaries. To recover Montgomery ladder
iteration boundaries from the latency trace, we use a binary
random forest classifier. Our classifier takes as input a vector
of 160 normalized latencies and predicts whether the center
of the vector is an iteration boundary.

Figure 12 shows the classifier’s outputs for the trace snippet
in Figure 11. The blue line is the classifier output on each
timestamp and the grey vertical dashed lines are the ground
truth of iteration boundaries. While the classifier manages
to recover most boundaries, it sometimes misses a boundary
(e.g., between k173 and k174). We overcome this problem by,
ironically, exploiting the Montgomery ladder’s constant-time
property. Because it executes the same sequence of operations
regardless of ki, the iteration length is relatively constant. We
can therefore estimate the average iteration period from the
predictions and use it to fix missing boundaries and remove

false positives.
Predict ki. Finally, we train another random forest classifier
that takes as input a vector of normalized latencies from an
iteration i, and predicts the value of ki. For each prediction,
the classifier also outputs a confidence score.

7.2 Results
Setup. We evaluate our attack method on a Skylake-X and
a Cascade Lake-X with OpenSSL 1.0.1e on Ubuntu 20.04
LTS (5.4.0-105-generic). We use OpenSSL 1.0.1e strictly as
a demonstration benchmark; after version 1.0.1e, OpenSSL
switched to an invulnerable branchless Montgomery ladder
implementation. We configure cores to run in performance
mode without fixing their frequency. Cores for experiments
are isolated to minimize context switches. We use the default
compilation flags to compile OpenSSL. The curve that we are
targeting is sect571r1, which uses a 571-bit nonce. We use
the binary random forest classifier machine learning model4

from scikit-learn 1.0.2 [52] for signal processing.
We evaluate the attack’s end-to-end accuracy with three

other approaches for monitoring victim stores (Step 2) be-
sides Binoculars, while keeping the rest of the steps same:
(1) BLANK: the attack process only measures time. This ap-
proach serves as a sanity check to show that the signal we
observe is not caused by any resource contention on reading
the timestamp. (2) MEMJAM-PARA: this approach relies on
false dependence in the L1D cache (Section 2) that is de-
scribed in MemJam [44]. Similar to the setup in MemJam, we

4 Model parameters: n_estimators=400, min_samples_split=5,
min_samples_leaf=1, max_features="log2", max_depth=30
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Figure 14: Required log2 brute force attempts to recover the full nonce k with the improved method (Based on ki predictions
with predicted boundaries).

measure the latency of eight parallel loads that are 4K-aliasing
with a target store offset. (3) MEMJAM-DEP: this approach
replaces eight parallel loads in MEMJAM-PARA with four
dependent loads to enhance the contention. (4) BINOCULARS
(this work): this approach relies on the store→load channel.

For each approach, we collect 100 latency traces to train the
first random forest classifier that predicts Montgomery ladder
iteration boundaries. This step takes about 1 minute to collect
and process the traces (about 500k training samples), and 10
minutes to train on a 16-core machine. Then, we use another
30 traces to train the second random forest classifier that
predicts ki. This step takes about 2 minutes to collect, process,
and train on the same machine (about 17k training samples).
Finally, we evaluate the end-to-end accuracy of each method
on another 100 traces and discuss the security implications
(i.e., nonce recovery). Note that we do not include results
on a Haswell-EP, because none of these four approaches can
achieve good accuracy with a single victim run on it, mainly
due to its low performance and thus weak contention effects.

Accuracy. Figure 13 shows the accuracy distribution of each
approach on different CPU platforms. For each approach, we
show the results with iteration boundaries predicted by the
boundary classifier and with oracle boundaries. The excep-
tion is BLANK, in which we only show results with oracle
boundaries since the boundary classifier cannot output any
meaningful prediction for its traces. For each distribution,
the area represents the density of samples at a given accu-
racy. A wider area means the corresponding accuracy is more
likely to occur. The thick short black bar represents the first
to third quartile range. The thin long black bar represents
the lower and upper bounds after filtering outliers with the
quartile range. The white dot represents the median of the

distribution.
BINOCULARS has the highest accuracies on both CPU

platforms. On average, its accuracies are 98.5 ± 0.3% on
a Skylake-X and 98.4± 0.3% on a Cascade Lake-X (N =
100,P = 0.95, same N and P value below), or with oracle
boundaries, 99.1± 0.1% on a Skylake-X and 98.7± 0.8%
on a Cascade Lake-X. Using oracle boundaries, sometimes
BINOCULARS can even recover the full nonce without any er-
ror. Compared to BINOCULARS, other approaches have lower
accuracy and higher deviation. MEMJAM-PARA, on average,
can achieve 96.0± 0.6% on a Skylake-X and 94.1± 0.5%
on a Cascade Lake-X. On average, MEMJAM-DEP’s accura-
cies are 94.9± 0.7% on a Skylake-X and 93.8± 0.6% on a
Cascade Lake-X. BLANK achieves accuracies that are only
slightly better than random guessing (i.e., 50%), indicating—
as expected—that just reading the timestamp cannot reveal
ki.
Nonce Recovery. To completely recover the full 571-bit-long
nonce k, we need to find and correct erroneous bits in the
predictions through brute forcing. Since we do not know how
many bits are incorrect and where those bits are, we have to
first guess the number of erroneous bits ne, starting from 1,
then try to flip all Cne

571 combinations. If no correct solutions
are found, we will increment ne and repeat the process.

To speed up the brute force search, we improve the method
based on an observation that most erroneous bits have low
confidence scores. In the improved method, we first sort all
the predicted bits by their confidence scores in an ascending
order. Then, we pick the top NL low-confident bits and try to
flip all Cne

NL
combinations for a given ne. Since NL can be much

smaller than the bit-length of k (i.e., 571), the search space is
significantly reduced. Note that if the NL low-confident bits



fail to cover some erroneous bits, the brute force will fail. In
that case, we will increase NL and retry.

Figure 14 shows histograms of log2 brute force attempts
with the improved method. These histograms are based on
ki predictions with predicted Montgomery ladder iteration
boundaries. On a Skylake-X (Figure 14a), BINOCULARS re-
quires a median of 223.4 brute force attempts to recover k,
which is feasible. If we assume an acceptable brute force at-
tempts threshold at 240, BINOCULARS can succeed on 78.5%
of traces. However, MEMJAM-DEP and MEMJAM-PARA re-
quire many more brute force attempts. Their median attempts
are 2101.6 and 282.0 respectively. With the same brute force
threshold, they can only recover 1.0% and 3.1% of traces.

On a Cascade Lake-X (Figure 14b), every approach re-
quires slightly more brute force attempts. From left to right,
BINOCULARS requires 224.7 median brute force attempts, and
recovers k on 77.9% of traces with a brute force threshold
of 240. While MEMJAM-DEP and MEMJAM-PARA require
2130.8 and 2132.5 median brute force attempts. Under the same
brute force threshold, they can only recover 1.0% and 0.0%
of traces.

8 Compromising KASLR
Linux uses kernel address space layout randomization
(KASLR) to increase the difficulty of exploiting memory
safety vulnerabilities. Linux randomizes the base addresses
of several kernel memory regions at boot time. Since the
possible kernel’s address range is 1 GB (30 bits) and base
addresses are aligned to 2 MB boundaries (21 bits), Linux’s
KASLR has 9 bits of entropy (512 choices) [14]. The address
bits randomized are bits 29-21, i.e., the PL2 index.

Attack Method. Using the load→store channel, an attacker
can recover the full virtual page number (VPN) of a TLB-
missing victim (kernel) memory load. Assuming the offset
of the accessed page within its kernel segment is known, the
base address of the segment can be derived, breaking KASLR.

We implement this idea by attacking a system call that ac-
cesses a global variable, whose offset within the kernel image
is known for a given kernel build. We choose the SYS_time
system call (similar to prior work [41]) which accesses the
global variable tk_core. The attack is similar to the setup in
Figure 6, with the difference that the attacker measures the
end-to-end execution time of the victim. The attacker runs
two hyperthreads on the same physical core. The first hyper-
thread flushes the TLBs and measures the latency of calling
SYS_time, while the second hyperthread keeps writing to
each possible PL offset. Because the TLBs are flushed, the
system call’s read of tk_core will miss in TLBs and trigger
a page walk. Consequently, the attacker will observe system
call latency spikes at offsets that are 4K-aliasing with any
PL index of tk_core. To minimize noise caused by irrel-
evant TLB-missing loads, the first thread makes an invalid
system call to warm up the system call handler before calling
SYS_time.
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Figure 15: Average latency of calling SYS_time when varying
store offsets on a Skylake-X.

Binoculars is fundamentally different from most prior
KASLR attacks [13, 14, 31, 34, 36, 59] which rely on monitor-
ing microarchitectural side effects of accessing a mapped or
unmapped address. Such attacks can be defeated by software
mitigations like FLARE [14], which creates fake mappings
for all possible kernel addresses, or kernel page-table isolation
(KPTI), which unmaps most kernel pages in user space [30].
In contrast, Binoculars directly observes the kernel’s TLB-
missed memory loads, which allows the attacker to break
KASLR even if KPTI or FLARE is deployed. Compared to
prior work that also monitors victim’s memory accesses [41],
Binoculars can completely break KASLR thanks to its wide
address bits coverage, in contrast to reducing entropy in [41].
Results. We use the same hardware set as in Section 4, run-
ning Ubuntu 20.04 LTS (5.4.0-105-generic). On Haswell-EP
and Skylake-X platforms, which are vulnerable to Meltdown,
KPTI is enabled. We rely on /proc/kallsyms to collect the
ground truth of the global variable tk_core’s address.

Figure 15 shows the average latency of calling SYS_time,
measured at each offset on a Skylake-X. The global variable
tk_core is located at 0xffffffffa19f4f40 in this boot,
which corresponds to indexes to PL4, PL3, PL2, and PL1 equal
to 0x1ff, 0x1fe, 0x10c, and 0x1f4, respectively, which are
marked in the figure. While the latencies are huge at these
indexes, we do not see peaks as sharp as the ones in Figure 6
due to TLB-missing accesses that are not to tk_core. We
therefore run a peak detection algorithm.

To identify which peak corresponds to tk_core’s PL2 in-
dex, we need to discard the PL4, PL3, and PL1 indexes. We
use the fact that the PL4 and PL3 indexes are the same con-
stants in any Linux kernel image base address. Moreover, we
can learn tk_core’s PL1 index from its offset in the kernel
image, which is known for a given kernel build (and readable
in the image’s symbol table).

To measure the accuracy of identifying the PL2 index, we
reboot the system 10 times, and recover the index 100 times
per boot (1000 recoveries in total). We achieve accuracies of
100.0%, 98.7%, and 92.6% on the Skylake-X, Haswell-EP,
and Cascade Lake-X, respectively. These accuracies, however,
are of a single attacker run. They can be trivially improved to
100% on all three platforms by repeating the runs and picking



the most frequent PL2 index guess.

9 Potential Mitigations
The root cause of the Binoculars attack is the starvation of
hardware page walker loads by concurrent stores due to false
dependence and/or set conflicts in the L1D cache. A complete
fix of Binoculars thus requires hardware-level changes.

Software-wise, two mitigations can be applied. A system
can disable hyperthreading, or only allow mutally trusted
programs to share a physical core (e.g., core scheduling [40]).
However, this mitigation can under-utilize hardware resources
and lead to system performance degradation [15]. Alterna-
tively, potential victims can be rewritten with data-oblivious
programming practices [5, 17, 73], so that they do not make
secret-dependent memory accesses. But while data-oblivious
code is invulnerable to Binoculars and many other side chan-
nels, it usually requires a non-trivial amount of effort to
rewrite and verify the program, and incurs significant exe-
cution overhead.

10 Related Work
Attacks on Montgomery ladder. There have been several
attacks on Montgomery ladder. Yarom et al. [70] extend
Flush+Reload [71] to attack the same vulnerable implementa-
tion in Figure 9. Compared to Binoculars, their attack requires
the attacker to share memory with the victim, and has lower
average accuracy (95.7%).

Brumley et al. [11] attack a different part of the OpenSSL
implementation to recover the logarithm of k, which is then
used in a lattice attack to recover the private key. Unlike
Binoculars, this attack requires thousands of signatures and
its success rate is low.
Exploiting page walker loads. Page walker loads go through
the cache hierarchy and so can be observed with cache-
based side channels. There have been side-channel attacks
exploiting page walker loads to build stateful-indirect chan-
nels [12, 29, 66, 67]. Using these channels, the attack’s granu-
larity is limited to a cache line (64 bytes), which means that
it cannot distinguish accesses to neighboring pages, whose
8-byte PTEs share the cache line with the target page. Binoc-
ulars is also capable of performing such monitoring with the
load→store channel and has a finer granularity.

11 Conclusion
In this paper, we investigated and demonstrated the first
stateless-indirect channel by exploiting interactions between
in-flight page walk loads on behalf of one thread and stores
by another thread. We introduced a new side-channel attack
called Binoculars. Unlike conventional stateless channels,
Binoculars creates significant timing perturbations (e.g., up to
20,000 cycles)—making it easy to monitor. We showed that
the perturbations are address dependent, and designed two
Binoculars attack primitives to leak a wide range of virtual

address bits in victim memory operations. Using these primi-
tives, we demonstrated end-to-end attacks on real hardware,
which include extracting the nonce k in ECDSA with a single
victim run, and fully breaking kernel ASLR.

Disclosure. We disclosed the Binoculars side channel vul-
nerabilities to Intel in November 2021. Following our report,
Intel considers our findings covered by their guidelines for
mitigating timing side channels against cryptographic imple-
mentations [18].
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Availability
We open sourced Binoculars PoC at https://github.com/
zzrcxb/binoculars.

A Appendix: Detailed Root Cause Analysis

In this appendix, we explore the root cause of the strong
resource contention triggered by Binoculars (up to 20,000
cycles on a Skylake-X processor, Section 4).

Source of the Contention. We first confirm that the con-
tention originates from the page walk triggered by TLB
misses. To this end, we monitor various TLB- and page-
walker-related performance counter sub-events (Table 3) dur-
ing an experiment similar to the one in Figure 2. In the exper-
iment, one hyperthread performs a TLB-missing page access
while the sibling hyperthread keeps writing to an address that
is, (or is not), 4K-aliasing with one of the page walker loads.
Before the measurement, we first warm up the page by ac-
cessing it multiple times so that its data is cached; then, we
invalidate its translation from all the TLB levels.

Table 4 shows performance counter values collected
on an Intel Skylake-X for both the 4K-aliasing and no-
aliasing cases. If the store is not aliasing with the page
walker load, the page walker starts and completes one page
walk to handle the TLB miss (MISS_CAUSES_A_WALK and
WALK_COMPLETED events, respectively), which takes 42 core
clock cycles (WALK_DURATION), and all its page walker loads
plus the data access hit in the L1D cache. It takes 180 core
clock cycles in total to complete the page walk, the data ac-
cess, and then stop the performance counters.

In the 4K-aliasing case, however, the page walker starts
two page walks but only finishes one. Also, the sub-event
WALK_DURATION has a value that is close to Unhalted Core
Cycles. These results indicate that the core spends most
its cycles servicing the page walk, which takes a long time
to complete. Also, the page walk seems to be aborted and
restarted. The counters for page walker loads all indicate

https://github.com/zzrcxb/binoculars
https://github.com/zzrcxb/binoculars


Table 3: List of performance counter events.
Parent Event Sub-event Description
DTLB_LOAD_MISSES MISS_CAUSES_A_WALK Number of page walks (including incomplete walks)
DTLB_LOAD_MISSES WALK_COMPLETED Number of completed page walks
DTLB_LOAD_MISSES WALK_DURATION† Count of core clock cycles when the page walker is servicing page walks
PAGE_WALKER_LOADS DTLB_L1* Number of page walker loads that hit in L1D+Fill Buffer
PAGE_WALKER_LOADS DTLB_L2* Number of page walker loads that hit in L2
PAGE_WALKER_LOADS DTLB_L3* Number of page walker loads that hit in L3
PAGE_WALKER_LOADS DTLB_MEMORY* Number of page walker loads that read from main memory
MEM_LOAD_RETIRED L1_HIT Number of load instructions that hit in L1D (excluding page walker loads)
n/a Unhalted Core Cycles† Count of core clock cycles when the core is running
* Although these sub-events are only documented for Haswell-EP and Broadwell-EP, we find that they still exist and are functional on newer

microarchitectures like Skylake-X and Cascade Lake-X.
† These sub-events count core clock cycles, which are subject to turbo-boost. The rest of the paper uses reference clock cycles, which are not.

Table 4: Performance counter values on a Skylake-X.
Sub-event No Aliasing 4K-Aliasing
MISS_CAUSES_A_WALK 1 2
WALK_COMPLETED 1 1
WALK_DURATION (core clock cycles) 42 16452∗

DTLB_L1 4 4
DTLB_L2 0 0
DTLB_L3 0 0
DTLB_MEMORY 0 0
L1_HIT 1 1
Unhalted Core Cycles (core clock cycles) 180 16584∗

∗ These core clock cycles correspond to ≈ 20,000 reference clock cycles.

there are no L1D misses, which means that the slow page
walk is not caused by cache-missing loads. These observa-
tions confirm that the contention indeed comes from the page
walker. We hypothesize that the contention is so strong that
it leads to resource starvation of the page walker, which trig-
gers a “watchdog” to abort the page walk and restart it with a
higher priority over shared resources.

Cause of Starvation. To validate our starvation hypothe-
sis, we rely on Intel’s patents on virtual memory transla-
tion. According to one of Intel’s patents, the page walker
issues “stuffed” loads that bypass the RS and the ROB [26].
This mechanism is presented as an optimization to avoid any
scheduling latency that the RS or the ROB may cause.

After the stuffed load is dispatched by the page walker, it
is handled by the memory-order buffer (MOB). The MOB
checks for potential conflicts with pending stores—-i.e.,
whether a store may be writing to the address read by the
stuffed load. If a potential conflict is found, the page walker
aborts the walk and retries when the conflict is resolved. Al-
though this might sound like the root cause of the contention,
our further experimentation finds that only stores from the
same thread can cause conflicts, as the MOB is not shared by
the two hyperthreads, which disproves this explanation.

If the MOB finds no conflicts, the stuffed load is issued
to the L1D cache. In this step, the L1D cache may “squash”
the stuffed load under certain circumstances. If the squash
happens, the page walker will re-dispatch the stuffed load as
soon as possible, and the re-dispatched stuffed load may get
squashed by the L1D cache again. This behavior can starve
the stuffed load indefinitely. As will be discussed later, we

indeed find a performance counter sub-event that suggests
that the L1D cache receives thousands of read requests from
the stuffed load during a stalled page walk.

Magnitude of Starvation. Given that the L1D cache rejects
data accesses for various reasons (Section 2), why can Binoc-
ulars stall a page walk for up to 20,000 cycles while attacks
like CacheBleed and MemJam only delay a data access for a
few cycles? We hypothesize the answer is related to instruc-
tion scheduling differences.

In CacheBleed and MemJam, the conflicts are between
explicit data loads and stores. Data loads and stores are pro-
cessed by the ROB and the RS, and are scheduled by the
same Out-of-Order (OoO) engine of the physical core. The
OoO engine can therefore detect and mediate between the
conflicts after a few failed L1D accesses. In Binoculars, how-
ever, the conflicts are between implicit stuffed page walker
loads and explicit data stores. Because stuffed loads are man-
aged outside of the RS and the ROB, we hypothesize that the
OoO engine cannot detect such conflicts. Consequently, the
OoO engine simply allows the explicit data stores from the
other hyperthread to run “at full speed”, without realizing that
one hyperthread is trying to perform a page walk and failing,
as its stuffed loads are getting squashed. The page walker
thus suffers from resource starvation and eventually triggers a
mechanism that aborts and restarts the page walk (presumably
with a higher priority).

Cause of L1D Squashes. We find that both set conflicts and
false dependences can cause stuffed loads to be squashed
by the L1D cache, depending on the writing thread’s behav-
ior. Our analysis here is based on identifying undocumented
performance counters for these events.

To identify relevant counters, we perform a brute force
search over all possible counter sub-events, searching for the
ones that are highly correlated with the access latency of
TLB-missing loads. We perform the search by trying ev-
ery combination of the two 1-byte-long fields, EventSel
and UMask, which determine the sub-event in the perfor-
mance counter configuration model-specific registers [19].
Our search finds two interesting undocumented sub-events:
(1) EventSel=0x51, UMask=0x20 and (2) EventSel=0xbf,



UMask=0x01. Based on the EventSels of these two sub-
events and our reverse engineering, the first sub-event likely
counts the number of L1D read requests, including both suc-
cessful and squashed requests. The second sub-event likely
counts the number of failed L1D read requests due to false
dependences (Section 2). In the rest of our discussion, we
will refer to these two sub-events as L1D.READ_REQS and
L1D_BLOCKS.FALSE_DEPS respectively. We also find that the
L1D.READ_REQS sub-event is present only on Haswell-EP but
not on newer generations. Therefore, we will focus on results
on Haswell-EP for the rest of the discussion.

We perform three experiments to understand whether
Binoculars L1D squashes are due to 4K-aliasing or L1D set
conflicts. The experiments monitor these undocumented sub-
events as one hyperthread performs a TLB-missing memory
access, which triggers a page walk that reads from RA4, RA3,
RA2, and RA1, while its sibling hyperthread keeps writing
to an address WA. The experiments differ in the bits shared
by RA and WA, and in the frequency of writing to WA: (1)
BINOCULARS-4K: RA1 and WA share bits 11-3 (i.e., 4K-
aliasing); (2) BINOCULARS-SAMESET: RA1 and WA share
bits 11-6 but differ in bits 5-3 (i.e., they are mapped to the
same L1D cache set); (3) BINOCULARS-4K-LOWFREQ: RA1
and WA share bits 11-3, but the writer thread has a reduced
write frequency, as it executes arithmetic instructions between
writes. We ensure that the page walker loads, the data load,
and the stores only access up to two unique cache lines in an
L1D set, i.e., fewer than the associativity of the L1D cache.
We repeat each experiment 1000 times.

Figure 16 shows the results on a Haswell-EP in refer-
ence clock cycles (the maximum stall on a Haswell-EP is
around 16,000 cycles). The red dashed lines are fitted linear
regression lines. In the BINOCULARS-4K experiment (Fig-
ure 16a), the access latency is strongly correlated to the num-
ber of L1D read requests, which confirms that the stuffed page
walker loads are repeatedly squashed by the L1D cache and
re-dispatched by the page walker. From the fitted line, on aver-
age, it takes 9 cycles to squash and retry a stuffed load. How-
ever, looking at the right plot of Figure 16a, the correlation
between the access latency and L1D_BLOCKS.FALSE_DEPS is
very low, which suggests false dependences are not the main
cause of L1D squashes in this experiment.

The BINOCULARS-SAMESET experiment (Figure 16b)
still shows many high-latency events that are correlated to
L1D.READ_REQS. Compared to BINOCULARS-4K, however,
it has significantly fewer events that reach the maximum
16,000-cycle latency (131/1000 events in BINOCULARS-
SAMESET versus 847/1000 events in BINOCULARS-4K).
Also as expected, L1D_BLOCKS.FALSE_DEPS is always 0 be-
cause the page walker load is not 4K-aliasing with stores. This
experiment shows that without false dependences, contention
and even starvation can still occur as long as the RA1 and the
WA are mapped to the same L1D cache set (i.e., they suffer
set conflicts). Hovewer, they occur less frequently than they
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Figure 16: Scatter plot between the access latency and the two
undocumented sub-events. All plots share the same Y axes.

would in BINOCULARS-4K. Recall that we also see a similar
behavior in Figure 4.

Finally, in the BINOCULARS-4K-LOWFREQ experiment
(Figure 16c), the latency is still strongly correlated to
L1D.READ_REQS and it can reach the maximum 16,000-
cycle latency. But now it takes 10 cycles to squash and
retry. Also, the latency becomes strongly correlated to
L1D_BLOCKS.FALSE_DEPS, which means that false depen-
dences in the L1D cache become the main reason of L1D
squashes when the writer thread has a reduced frequency.

The results of the three experiments lead us to conclude
that both set conflicts and false dependences can cause stuffed
loads to be squashed by the L1D cache, depending on the
writer thread’s behavior. We believe that set conflicts only
happen in an early stage of a read access, while false depen-
dences occur in a later stage. This explains the one-cycle
difference in the squash-and-retry latency. We believe that
set conflicts require stricter timing requirements to trigger
(e.g., that read and write requests arrive at the same cycle)
compared to false dependences. Finally, we believe that set
conflicts (when they occur) dominate false dependences—i.e.,
when a set conflict occurs, a false dependence will not happen.

The above explain the results we see. When stores are
frequent (Figures 16a and 16b), set conflicts are more likely



to occur. This explains Figure 16a (set conflicts occur fre-
quently and dominate false dependences when they do) and
Figure 16b (in which set conflicts occur frequently and false
dependences are impossible). This also explains that in Fig-
ure 16c set conflicts are less likely and thus false dependences
dominate. Finally, this explains why starvation occurs less fre-
quently in BINOCULARS-SAMESET than in BINOCULARS-
4K: since a read request can “slip through” set conflicts due
to the strict timing requirements, high latency is hard to build
up in BINOCULARS-SAMESET. In BINOCULARS-4K, the
“slipped-through” request will likely be squashed due to a
false dependence in the next cycle, which makes the starva-
tion more likely to happen.
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