
Everywhere All at Once: Co-Location Attacks

on Public Cloud FaaS

Zirui Neil Zhao

University of Illinois Urbana-Champaign, USA

ziruiz6@illinois.edu

Adam Morrison

Tel Aviv University, Israel

mad@cs.tau.ac.il

Christopher W. Fletcher

University of Illinois Urbana-Champaign, USA

cwfletch@illinois.edu

Josep Torrellas

University of Illinois Urbana-Champaign, USA

torrella@illinois.edu

Abstract

Microarchitectural side-channel attacks exploit shared hard-

ware resources, posing significant threats to modern systems.

A pivotal step in these attacks is achieving physical host co-

location between attacker and victim. This step is especially

challenging in public cloud environments due to the wide-

spread adoption of the virtual private cloud (VPC) and the

ever-growing size of the data centers. Furthermore, the shift

towards Function-as-a-Service (FaaS) environments, charac-

terized by dynamic function instance placements and limited

control for attackers, compounds this challenge.

In this paper, we present the first comprehensive study

on risks of and techniques for co-location attacks in pub-

lic cloud FaaS environments. We develop two physical host

fingerprinting techniques and propose a new, inexpensive

methodology for large-scale instance co-location verifica-

tion. Using these techniques, we analyze how Google Cloud

Run places function instances on physical hosts and identify

exploitable placement behaviors. Leveraging our findings,

we devise an effective strategy for instance launching that

achieves 100% probability of co-locating the attacker with at

least one victim instance. Moreover, the attacker co-locates

with 61%–100% of victim instances in three major Cloud Run

data centers.

CCS Concepts: • Computer systems organization →
Cloud computing; • Security and privacy→ Side-channel
analysis and countermeasures.

Keywords: Cloud computing, Function-as-a-service (FaaS),

Co-location vulnerability, Timestamp counter

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0372-0/24/04. . . $15.00

https://doi.org/10.1145/3617232.3624867

ACM Reference Format:

Zirui Neil Zhao, AdamMorrison, ChristopherW. Fletcher, and Josep

Torrellas. 2024. Everywhere All at Once: Co-Location Attacks on

Public Cloud FaaS. In 29th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, Volume 1 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3617232.3624867

1 Introduction

Microarchitectural side-channel attacks [2, 8, 26, 33, 35, 49–

51, 64, 65] pose serious threats to modern computer systems,

where hardware resources are often shared among mutu-

ally distrusting users. In these attacks, an attacker monitors

a victim’s secret-dependent usage of the shared hardware

resources to exfiltrate sensitive victim information, such as

cryptographic keys [33, 50, 65]. The first step of these attacks

is to ensure that the attacker’s processes are co-located with

the target victim’s process on the same physical host [54].

Inmodern public cloud environments, attaining co-location

is challenging for several reasons. First, due to the wide-

spread adoption of the virtual private cloud (VPC) [18], mod-

ern cloud infrastructures have become resistant to prior

network-based co-location attack techniques [54, 59, 63]. Sec-

ond, with the rapid expansion of cloud computing and the

ever-growing sizes of data centers, the likelihood of attacker-

victim co-location has been reduced.

Adding to these challenges, cloud computing is gradually

shifting towards the emerging paradigm of Function-as-a-
Service (FaaS), exemplified by platforms like AWS Lambda [5],

Google Cloud Run [13], and Azure Functions [7]. Co-location

attack techniques in these FaaS environments are relatively

unexplored and present new challenges for attackers.

In the FaaS paradigm, an application is disaggregated into

multiple small standalone components called functions. Each
function is packed with its dependencies into a lightweight

FaaS container [1, 36, 40, 53]. Unlike in conventional vir-

tual machine (VM) environments, where users can spec-

ify the placement of VMs in availability zones and choose

hosts with certain CPUmodels, FaaS platforms abstract away

these operational details and fully manage the FaaS container

placement. Furthermore, due to the dynamic nature of FaaS

https://doi.org/10.1145/3617232.3624867
https://doi.org/10.1145/3617232.3624867
https://doi.org/10.1145/3617232.3624867

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

environments, container instances are frequently launched

and terminated to accommodate the dynamic workload de-

mands. Such characteristics make achieving co-location in

FaaS settings particularly difficult.

In this paper, we present the first comprehensive study

on risks of and techniques for co-location attacks in modern

public FaaS environments. Since public FaaS platforms do

not disclose their instance placement policies, reverse engi-

neering these policies is crucial to understand the co-location

risk and develop efficient co-location attacks.

To study how container instances are scheduled to phys-

ical hosts, we first develop two novel host fingerprinting
techniques. We show that, despite the use of sandboxing

and virtualization technologies [1, 36, 40, 53] in the cloud,

the attacker can still learn sensitive host information by di-

rectly interacting with the host hardware—specifically, the

timestamp counter. Our techniques are applicable to both

non-virtualized Linux containers (e.g., Docker [40]) and light-

weight VMs (e.g., Firecracker [1]), which are the two main-

stream containerization technologies used in FaaS platforms.

Armed with host fingerprints, we propose a new method to

inexpensively verify instance co-location on a large scale. This
is essential in vast modern data centers, where the attacker

needs to launch numerous instances to achieve co-location.

Using the host fingerprints and our scalable co-location

verification methodology, we perform a large-scale study on

Google Cloud Run [13] to analyze its instance placement

strategy. Our investigation uncovers exploitable instance

placement behaviors in Cloud Run. Notably, Cloud Run ap-

pears to employ a load balancing mechanism that distributes

instances of a function to numerous hosts when the function

experiences a high demand within a short time window. We

then develop an instance launching strategy that exploits

this behavior to deploy attacker instances onto a significant

portion of Cloud Run hosts within a data center—drastically

increasing co-location efficacy and reducing the financial

cost of the attack.

We demonstrate the ability of our attack strategy to achieve

100% probability of co-locating the attacker with at least one

victim instance in three major Cloud Run data centers in the

US: us-east1, us-central1, and us-west1. Moreover, our strat-

egy effectively co-locates the attacker with 100% of victim

instances in us-west1, nearly 100% in us-east1, and between

61% and 90% in us-central1, depending on the victim account.

In addition, we observe at least 1702 hosts in the largest

data center, and show that our strategy successfully deploys

attacker instances that reside on 904 hosts at once, with an es-
timated expense of only 23 USD—showcasing the practicality

of co-location attacks in large modern data centers.

This paper makes the following contributions:

• We introduce two effective host fingerprinting techniques

as a primitive to study the instance placement policies of

modern public FaaS platforms.

•We propose a scalable and inexpensive methodology for in-

stance co-location verification assisted by host fingerprints.

• We systematically study the instance placement policies

of Google Cloud Run and identify behaviors exploitable for

co-location attacks.

• We devise an efficient attack strategy that achieves high

co-location rates with different victim accounts on Google

Cloud Run.

Disclosure to Google. We reported our findings to Google

in early August 2023. Google identified our findings as an

abuse risk and assigned the issue to their Trust & Safety

team.

Availability. We open sourced our implementations at

https://github.com/zzrcxb/EAAO.

2 Background

2.1 Microarchitectural Side Channels

Microarchitectural side channels exploit shared hardware

resources to bypass access control policies and exfiltrate sen-

sitive information. Examples of commonly-exploited shared

hardware resources include caches [35, 50, 65], TLBs [33, 57],

coherence directories [64], and functional units [2, 8]. These

attacks are particularly dangerous in cloud environments,

where hardware resources are extensively shared between

mutually distrusting parties.

In general, conducting a microarchitectural side-channel

attack in the cloud involves two steps [54]. The first step is to

co-locate the attacker with the victim on the same physical

host, as these side channels rely on sharing hardware re-

sources with the victim. The second step is extraction, where
the attacker monitors the victim’s execution through a side

channel and exfiltrates sensitive information. While numer-

ous studies explore different side channels for extraction,

there has been limited research on achieving the first step in

contemporary cloud environments. Our work investigates

this first step, co-location.

2.2 Function-as-a-Service

Function-as-a-Service (FaaS) [5, 7, 13] is an emerging cloud

computing paradigm that disaggregates a large monolithic

application into many small standalone components called

functions. Each function typically has a single, independent

functionality, separate from the others. To perform the task

of the original monolithic application, these functions collab-

orate and communicate with each other over the network.

Consequently, functions are usually implemented as web

services that can be invoked through various means, such as

HTTP requests, WebSockets, or remote procedure calls [16].

In this paper, we use function and service interchangeably.
Function deployment and management. To simplify

function deployment and management, each function is

packedwith its dependencies into a lightweight, self-contained

https://github.com/zzrcxb/EAAO

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

container image. The containerization process ensures a con-

sistent execution of the function across various environ-

ments.

The FaaS platform orchestrator fully manages function

instances at a container-level granularity. When a function

is invoked by a user or another function, the orchestrator

launches a new container instance of the requested function

to process the incoming request. After serving the request,

the instance enters an idle state, releasing its CPU, and await-

ing further incoming requests. Idle instances are typically

chargedminimally or not at all. If an instance remains idle for

an extended period of time (e.g., 15 minutes), it is terminated

and destroyed [15].

Autoscaling. A FaaS platform can dynamically adjust the

number of instances of a function based on its demand, a

feature known as autoscaling [10]. When there is a surge

in requests for a function that exceeds its current capacity,

the orchestrator scales out, deploying additional instances to

accommodate the increased demand. Conversely, when the

demand for a function declines, the orchestrator scales in by

terminating excess instances, thus freeing up resources for

instances of other functions.

Instance placement. When selecting a host to place a new

container instance, a typical FaaS orchestrator first identifies

all the hosts that meet specific constraints. Then, among such

hosts, it selects the one with the highest score, relying on

criteria such as resource utilization and load balancing [20].

The orchestrator can tweak the instance placement algorithm

by incorporating additional policies, such as affinity and

anti-affinity rules. Affinity rules aim to place instances from

functions that frequently interact with each other on the

same host to reduce communication overhead. In contrast,

anti-affinity rules attempt to distribute instances of the same

function across different hosts for fault tolerance.

2.3 The Cloud Run Platform

In this paper, we primarily focus on the Cloud Run plat-

form [13] from Google Cloud as our target. Cloud Run is

a fully-managed serverless computing platform designed

for containers, and it powers Google Cloud’s FaaS platform.

Users of Cloud Run can deploy services using either prede-

fined container templates or custom-built container images.

As user containers can run arbitrary programs on Cloud

Run, the platform offers two types of sandboxed execution

environments to ensure software security.

First generation environment (Gen 1) [11]. Cloud Run

uses gVisor [36] to sandbox Linux containers in its first-

generation environment without host hardware virtualiza-
tion. Figure 1 shows an overview of gVisor. At a high level,

gVisor runs as a userspace kernel that intercepts and emu-

lates normal system calls. This design prevents the untrusted

application from directly interacting with the host kernel,

reducing the attack surface. Consequently, the user applica-

tion cannot access sensitive host information. For example,

gVisor conceals the host CPU model name and cache sizes

by emulating /proc/cpuinfo. Additionally, gVisor also
virtualizes the host’s runtime states, such as its IP address

and uptime.

Applica�on

gVisor

Host Kernel

Unprivileged

Privileged

System calls

Limited system calls

Figure 1. Overview of gVisor container sandbox [36].

Second generation environment (Gen 2) [11]. Cloud

Run uses lightweight virtual machines (VMs) to sandbox user

programs in its second-generation environment, which was

introduced in December 2022 [14]. In Gen 2, the untrusted

user program runs inside a guest VM on the virtualized

host hardware. Using hardware virtualization, the hypervisor

can trap and emulate certain x86 instructions like cpuid,
thus creating an illusion of the hardware on which the user

runs. As a result, the user has no access to sensitive host

information.

Comparison between Gen 1 and Gen 2. Both execution

environments have their pros and cons, which means that

they are complementary rather than substitutional. Since

Gen 1 uses Linux containers, it has a small resource footprint

and features fast start-up time [11]. This feature is crucial for

user-facing web applications that are latency-critical [29, 42,

46], such as web search [46], online collaborative document

editing [32], and key-value stores [22, 44, 46]. Increases in

latency can negatively impact advertisement revenue [56].

Yet, a limitation of Gen 1 lies in its potential compatibility

issues stemming from system call emulation.

Conversely, Gen 2 provides full Linux compatibility, and

in a steady state, it performs better than Gen 1. However, its

large resource footprint results in longer start-up times [11].

At the time of this writing, Cloud Run uses Gen 1 for services

by default [11]. Moreover, Gen 1 is used in other Google

Cloud products like Cloud Function [12] (Google Cloud’s

equivalent of AWS Lambda [5]). Therefore, in this paper, we

primarily focus our exploration on Gen 1 and demonstrate

the transferability of our results to Gen 2.

2.4 Timekeeping in x86

In recent years, the timestamp counter (TSC) has become a

preferable timekeeping option on x86 platforms, as CPU ven-

dors increasingly support invariant TSC. An invariant TSC is

reset to zero at boot time and increments at a fixed rate, irre-

spective of the CPU’s frequency scaling and power state [24].

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

Compared to other clock sources, TSC offers greater time

resolution and lower time retrieval cost. TSC can be conve-

niently accessed using the unprivileged instructions rdtsc
and rdtscp.

To use the TSC as a clock source in Linux, the kernel needs

to determine its frequency. Since the actual TSC frequency

usually deviates from the frequency reported by cpuid by

a constant value (which can be up to a few MHz), the kernel

refines the TSC frequency using other hardware clocks in the

system and utilizes the refined frequency for more accurate

timekeeping [21]. On multi-core systems, Linux also verifies

TSC synchronization across cores to prevent time anomalies.

Generally, TSC is synchronized among cores across sockets

on Intel platforms.

3 Threat Model

Recall that a generalized microarchitectural side-channel

attack consists of two steps: co-location and extraction (Sec-

tion 2.1). In this paper, we consider an attacker aiming to

co-locate with instances of a target victim service on a public

FaaS platform (step 1). We assume that the victim service

processes sensitive information, such as a login service that

performs authentication. Since the victim service is usually

part of a large web application with public interfaces, we

assume that the attacker can either directly or indirectly in-

voke the victim service through those interfaces. Finally, we

assume that, once co-located with the victim, the attacker

can detect when the victim program is running and exfiltrate

the said sensitive information through techniques discussed

in prior work [25, 41, 54, 59, 68].

We assume an unprivileged attacker who is a standard

user of a public FaaS platform (e.g., Cloud Run). We also as-

sume that the FaaS platform is trusted and does not collude

with the attacker. These two assumptions imply that the

attacker can only interact with the platform through stan-

dard FaaS interfaces that are available to all platform users,

such as deploying custom services and sending requests to

services. Using these interfaces, the attacker can execute

arbitrary programs on the platform inside their containers,
and the attacker can launch new container instances through

autoscaling (Section 2.2). Additionally, we assume that the

attacker has no knowledge of the exact host selection poli-

cies employed by the platform orchestrator and can only

observe their behavior using black-box methods.

4 Host Fingerprinting in the Wild

Public FaaS platforms, such as Cloud Run [13], do not re-

veal their instance placement policies. In this section, we

propose novel, highly accurate physical host fingerprinting

techniques suitable for both non-virtualized Linux contain-

ers (e.g., the Gen 1 environment) and lightweight VMs (e.g.,

the Gen 2 environment). Using our fingerprints, attackers

can gain insights into the placement policy of the cloud plat-

form, allowing them to develop launching strategies that

drastically boost the efficacy of co-location attacks.

As the focus of our paper is on the Gen 1 environment,

we organize this section as follows: Section 4.1 provides an

overview of host fingerprinting in Gen 1; Section 4.2 dis-

cusses two possible implementations to obtain host finger-

prints in Gen 1; Section 4.3 proposes a new methodology to

verify instance co-location in a scalable manner; Section 4.4

evaluates our fingerprinting for Gen 1 in the wild; and Sec-

tion 4.5 extends the Gen 1 fingerprinting technique to the

Gen 2 environment and evaluates its accuracy.

4.1 Overview

Recall that, in the Gen 1 environment, gVisor sandboxes

user programs and hides the host information (Section 2.3),

thereby blocking host fingerprinting through IP addresses

or statistics in the /proc filesystem [54, 59]. However, we

find that we can bypass gVisor’s software countermeasures

to learn sensitive host information by directly interacting

with the non-virtualized host hardware.

For example, the attacker can use the unprivileged in-

struction cpuid to extract information like the CPU model

and cache hierarchy structure, which are essential for many

cache-based side-channel attacks [45, 50, 51, 61]
1
. Similarly,

the attacker can use the unprivileged instructions rdtsc
and rdtscp to read the host’s timestamp counter (TSC).

The TSC is reset to 0 on host boot and increments at a fixed

rate non-stop (Section 2.4). Therefore, the attacker can use

the value of TSC to infer the uptime of the host, which in

turn can be used to determine its boot time.

Based on this insight, we propose to use the host’s CPU

model (𝑚𝑜𝑑𝑒𝑙) and the host’s boot time in real-world time

(𝑇𝑏𝑜𝑜𝑡) to fingerprint a host in the Gen 1 execution environ-

ment. The intuition of using𝑇𝑏𝑜𝑜𝑡 is that different hosts very

likely have different boot times due to system maintenance,

hardware failures, and power management (e.g., powering

off the host when the computation demand is low). As a

result,𝑇𝑏𝑜𝑜𝑡 can accurately differentiate physical hosts. Since

it is trivial to read the CPU model through cpuid, we focus
our discussion on deriving the host’s 𝑇𝑏𝑜𝑜𝑡 .

4.2 Deriving the Boot Time from the TSC Value

To derive the host’s boot time 𝑇𝑏𝑜𝑜𝑡 , the attacker can read

the host’s TSC value (denoted by 𝑡𝑠𝑐) through rdtsc or

rdtscp, and simultaneously record the real-world time of

this measurement (denoted by 𝑇𝑤) through a system call.

Then, the host’s boot time is calculated as follows:

𝑇𝑏𝑜𝑜𝑡 = 𝑇𝑤 − 𝑡𝑠𝑐/𝑓 , (4.1)

1
Intel introduced the Processor Serial Number (PSN) in the Pentium III

processor [23]. The PSN uniquely identifies an individual processor and can

be queried through cpuid. However, the PSN is discontinued in recent

Intel processors due to privacy concerns.

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

where 𝑓 is the TSC frequency measured in Hz. Eq. 4.1 as-

sumes that the host CPU supports an invariant TSC (Sec-

tion 2.4), which holds for all CPU models we observed in

Cloud Run. However, even on the same host, the derived

𝑇𝑏𝑜𝑜𝑡 can exhibit small variations across measurements due

to noise. Consequently, we round𝑇𝑏𝑜𝑜𝑡 to a certain precision

𝑝𝑏𝑜𝑜𝑡 (e.g., 1 s). With the rounded value, measurements from

the same host consistently produce the same fingerprint.

To obtain 𝑓 , we propose two methods. Neither method re-

lies on any features from gVisor or Cloud Run, making them

applicable to other Linux container-based environments.

1 Using the reported TSC frequency. In this method,

the attacker uses the TSC frequency reported by cpuid. If
cpuid does not report the TSC frequency, which is the case

on Cloud Run, the attacker can use the labeled base frequency

found in the model name. Empirically, this base frequency

is equal to the TSC frequency that the clock is supposed

to operate on [24]. For example, CPU model “Intel Xeon

CPU @ 2.00GHz” has a base frequency and TSC frequency

of 2.00GHz. We refer to a TSC frequency obtained through

either way as the reported TSC frequency.
Unfortunately, the reported TSC frequency is often slightly

inaccurate, deviating from the actual TSC frequency by a

constant value [21] (Section 2.4). This inaccuracy can cause

the derived 𝑇𝑏𝑜𝑜𝑡 to drift over time, causing fingerprinting

false negatives. To understand why, let us denote the re-

ported TSC frequency as 𝑓𝑟 = 𝑓 ∗ + 𝜖 , where 𝑓 ∗ is the actual
frequency and 𝜖 is the constant error. Suppose we collect two

fingerprints from the same host at two different real-world

times𝑇𝑤1
and𝑇𝑤2

, with TSC values 𝑡𝑠𝑐1 and 𝑡𝑠𝑐2, respectively,

as illustrated in Figure 2.

Real-world
Time

Host boots
Measurement 1

(read 𝑡𝑠𝑐1)

𝑇𝑤1

Measurement 2
(read 𝑡𝑠𝑐2)

𝑇𝑤2

Δ𝑇𝑤

Real-world
Time

D
er

iv
ed

𝑇 𝑏
𝑜
𝑜
𝑡

Figure 2. Illustration of drifting in the derived 𝑇𝑏𝑜𝑜𝑡 over

time.

Using Eq. 4.1, the 𝑇𝑏𝑜𝑜𝑡 derived from the two measure-

ments differs by

Δ𝑇𝑏𝑜𝑜𝑡 = 𝑇𝑏𝑜𝑜𝑡2 −𝑇𝑏𝑜𝑜𝑡1 = (𝑇𝑤2
− 𝑡𝑠𝑐2/𝑓𝑟) − (𝑇𝑤1

− 𝑡𝑠𝑐1/𝑓𝑟)
= Δ𝑇𝑤 − Δ𝑡𝑠𝑐/𝑓𝑟
= Δ𝑇𝑤 − Δ𝑇𝑤 𝑓

∗/𝑓𝑟
= Δ𝑇𝑤𝜖/𝑓𝑟 . (4.2)

Since both 𝜖 and 𝑓𝑟 are constant, |Δ𝑇𝑏𝑜𝑜𝑡 | increases linearly as
Δ𝑇𝑤 grows, where Δ𝑇𝑤 is the time elapsed between two mea-

surements. If Δ𝑇𝑤 is sufficiently large, |Δ𝑇𝑏𝑜𝑜𝑡 | will exceed

the rounding precision 𝑝𝑏𝑜𝑜𝑡 , causing the rounded 𝑇𝑏𝑜𝑜𝑡 to

differ and leading to a false negative. As a result, we say that

the fingerprint exhibits an “expiration time” that depends on
the frequency error 𝜖 .

2 Using measured TSC frequency. An alternative ap-

proach is tomeasure the actual TSC frequency. This approach

mitigates the drifting problem. Similar to how Linux refines

the TSC frequency at boot time [21], the attacker can read the

TSC twice, waiting a real-world time Δ𝑇𝑤 in-between. The

TSC frequency can then be calculated as Δ𝑡𝑠𝑐/Δ𝑇𝑤 . How-
ever, unlike the Linux kernel, the attacker cannot access

other hardware clocks to obtain an accurate Δ𝑇𝑤 in the sand-

boxed container, as accessing those clocks requires privi-

leged instructions. Consequently, the attacker can only rely

on system calls to obtain Δ𝑇𝑤 , which may be subject to noise

caused by interrupts and context switches.

We tested this approach on Cloud Run with Δ𝑇𝑤 ≈ 100ms

and found that the measured TSC frequency exhibits stan-

dard deviations of less than 100Hz after 10 repetitions on

most Cloud Run hosts. However, on a small yet significant

portion of the evaluated hosts, we observed large standard

deviations ranging from 10 kHz to a few MHz, even after

100 repetitions with an increased Δ𝑇𝑤 . As a result, two co-

located instances on such problematic hosts can measure the

TSC frequency as two significantly different values—and the

𝑇𝑏𝑜𝑜𝑡 derived by the two instances will not match, leading to

declaring that the two instances are on two different hosts

(i.e., a false negative).

Notably, during the experiment of validating fingerprint-

ing accuracy in Section 4.4.1, we found that 58 out of the 586

evaluated hosts (or about 10%) exhibited such problematic

behavior. These affected hosts were largely the same across

measurements conducted at different times. Therefore, in

the rest of the paper, we obtain 𝑓 using the first method (i.e.,

the reported TSC frequency) and, in Section 4.4.2, evaluate

the expiration time of fingerprints due to the inaccurate 𝑓 .

4.3 Verifying Instance Co-location in a Scalable

Manner

In Section 4.4.1, we will evaluate the accuracy of our fin-

gerprints by launching multiple instances and measuring

whether instances that obtain the same fingerprints are in-

deed co-located, and vice versa. To do that, in this section,

we first develop a new methodology to generate the ground

truth of instance co-location in a scalable and inexpensive

manner.

To understand our methodology, consider first the conven-

tional approach to test instance co-location using a covert

channel. The process involves picking two container in-

stances at a time and instructing both of them to simul-

taneously put high pressure on a shared resource in the host,

such as the random number generator (RNG) [27] or mem-

ory bus [62]. If both instances observe resource contention

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

above a certain threshold, then we conclude that they are

co-located. The drawback of this naive pairwise approach is

that it has a time complexity of 𝑂 (𝑁 2), where 𝑁 is the total

number of instances under test.

We propose a new approach to test 𝑛 instances at once,

where 𝑛 > 2. Specifically, consider a covert-channel test

primitive for 𝑛 instances

𝐶𝑇𝑒𝑠𝑡 (𝑖1, 𝑖2, ..., 𝑖𝑛) → {𝑏1, 𝑏2, ..., 𝑏𝑛},
that takes as input a list of 𝑛 container instances under test

({𝑖1, 𝑖2, ..., 𝑖𝑛}) and instructs all 𝑛 instances to simultaneously

put pressure on the shared resource. This primitive returns

a list of boolean values ({𝑏1, 𝑏2, ..., 𝑏𝑛}) that indicate whether
each corresponding instance observes a contention level

above a certain threshold. We assume that it only takes two

co-located instances to generate enough contention to go

over the contention threshold. In this case, if an instance

𝐴 does not see contention over the threshold (i.e., it tests

negative), then we can conclude that 𝐴 is not co-located

with any of the other 𝑛 − 1 instances. Furthermore, if all 𝑛

instances test negative, then, in a single test, we conclude

that no instance is co-located with any other instance.

If an instance 𝐴 tests positive, we may know which in-

stances are co-located with𝐴, depending on the total number

of positive instances in the test. To see why, consider as an

example a test with four instances {𝐴, 𝑖1, 𝑖2, 𝑖3}. If three in-
stances, including 𝐴, are positive, e.g., 𝐶𝑇𝑒𝑠𝑡 (𝐴, 𝑖1, 𝑖2, 𝑖3) →
{𝑇,𝑇 ,𝑇 , 𝐹 }, then we can conclude that {𝐴, 𝑖1, 𝑖2} must be

co-located, as it takes at least two co-located instances to

test positive. However, if all four instances are positive, we

cannot conclude that they are co-located on the same host;

it is possible that these four instances reside on two hosts,

e.g., {𝐴, 𝑖1} are co-located and {𝑖2, 𝑖3} are co-located. As a
result, we can only test 𝑛 ≤ 3 instances at once without the

confusion of whether they share one or multiple hosts.

We can further improve the test efficiency by (i) either

raising the contention level threshold for an instance to

test positive, or (ii) reducing the amount of pressure each

instance generates. For example, if each instance generates

a contention of 1 unit and we set the threshold to𝑚 units

(𝑚 > 2), then it takes at least 𝑚 co-located instances for

each one of the𝑚 instances to test positive. As a result, if

𝑚,𝑚 + 1, ..., or 2𝑚 − 1 instances test positive, we verify that

these positive instances share the same host in a single test.

Our approach. Based on the above discussion, our approach

hierarchically generates the ground truth for fingerprinting

validation. The approach is illustrated in Figure 3, where

each symbol represents a container instance, and truly co-

located instances have the same shape. Assume that we have

nine instances and that, using our fingerprinting method,

conclude that there are three different fingerprints (F1, F2,
and F3), and three instances per fingerprint. To validate our

findings, we first group the instances based on their finger-

prints (dashed lines in 1○). If our fingerprints have a high

accuracy, instances in the same group are likely to be indeed

co-located, while those in different groups are likely not.

𝔽1 { , , }

{ , } { }

{ , } { }

{ , , }

{ , }

{ , }

{ , }

②

③
𝔽2

𝔽3

②

②

①
x

x x

x x

Figure 3. Overview of our fingerprint validation methodol-

ogy. Each symbol represents a container instance. Instances

with the same shape are truly co-located.

Next, we use an appropriate 𝑚 to test likely co-located

instances from each group at once. In the example, we use

𝑚 = 2 (2○). After this test, if a group had any false positive

(e.g., the group with F2 and F3 in Figure 3), it is divided into

several clusters, where each cluster includes instances that

are verified to be co-located. Otherwise, the entire group

remains intact and is considered as a single cluster (e.g.,

the group with F1 in Figure 3). Step 2○ has identified all

the false positives. In the best-case scenario where no false

positives existed, each fingerprint is verified with one single

test. In this case, the total number of tests is the number of

fingerprints under validation, which is the number of hosts—

except for potential false negatives, as we will consider next.

Note that Step 2○ tests each fingerprint group in sequence,

to avoid interference. We can further reduce the execution

time of Step 2○ by concurrently verifying fingerprints that

are guaranteed to belong to different hosts, such as thosewith
different CPU models. As will be discussed in Section 4.5,

the Gen 2 fingerprint makes crucial use of this optimization.

After this, we want to find the false negatives—i.e., two

instances with different fingerprints that are actually co-

located. Since instances from the same cluster are verified

to be co-located, we pick one instance from each cluster to

represent the host they reside on. In Figure 3, we pick the

five instances that are decorated with an ×. These selected
instances are unlikely co-located. Hence, we set𝑚 = 2 and

test these selected instances all at once (3○). Those that test

positive are false negatives. In our example, they are the

two stars. Then, we further refine our tests on the positive

instances to identify co-located instances and merge the

clusters they represent. In the example, we end up with four

clusters, as the figure shows. In the best-case scenario where

no false negatives existed, Step 3○ only requires one test.

If an initial group in Step 1○ is large, we split it into several

smaller groups with no more than 2𝑚 − 1 instances each,

where 𝑚 is small (in our implementation, we use 𝑚 = 2).

Then, we test each group individually. If each small group

is verified to be co-located, we pick one instance from each

group to hierarchically test their co-location. If some tests

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

in this process turn out negative, for simplicity, we fall back

to pairwise tests within the initial large group.

In summary, our approach’s best-case time complexity is

𝑂 (𝑀), where𝑀 is the number of hosts occupied by the in-

stances under validation. This best-case scenario is common

if fingerprints are accurate, which we will see is true for our

Gen 1 fingerprints in Section 4.4.1.

Comparisonwith conventional pairwise covert-channel

testing [41, 54, 59]. The main goal of our host fingerprint-

ing technique is to improve the attacker’s ability to achieve

co-location. Remarkably, while conventional pairwise covert-

channel testing only confirms co-location at a particular mo-

ment, our host fingerprinting allows an attacker to track a

host over time. Our technique thus enables the attacker to

comprehensively study how container instances are placed

onto specific hosts at different times, which can be lever-

aged to develop efficient instance launching strategies to

significantly increase the probability of co-location with a

target victim (Section 5). We will see that, if an attacker sim-

ply launches instances without insight into the placement

policy, the rate of co-location is often zero, whereas our tech-

nique attains a co-location rate of 61%–90% in us-central1
and near 100% in us-east1 and us-west1 with minimal cost.

Our co-location verification method is both faster and fi-

nancially cheaper than conventional pairwise covert-channel

testing. In Section 4.4.1, we verify the co-location of 800 con-

tainer instances. Using pairwise testing, this verification pro-

cess requires 319, 600 pairwise tests. Moreover, these tests

are serialized to avoid interference. Assuming an optimistic

execution time of 100ms per test, finishing these pairwise

tests would take 8.9 hours. In contrast, we find that our ap-

proach only takes about 1 to 2 minutes to validate all 800

instances.

To estimate the financial cost of performing these tests on

Cloud Run, we use the Cloud Run pricing model [17]. For a

standard instance requesting 1 vCPU and 0.5GBmemory, the

cost is estimated using the formula 𝑁 × 𝑡 × (𝑅𝑐𝑝𝑢 + 0.5𝑅𝑚𝑒𝑚).
In this equation, 𝑁 is the number of active instances, 𝑡 is the

active time of these instances in seconds, 𝑅𝑐𝑝𝑢 is the CPU

time cost per vCPU-second in USD, and 𝑅𝑚𝑒𝑚 is the memory

cost per GB-second in USD. At the time of this writing,𝑅𝑐𝑝𝑢 =

¢0.0024/vCPU-second and 𝑅𝑚𝑒𝑚 = ¢0.00025/GB-second in

us-east1, us-central1, and us-west1.
Based on this pricing model and rates, performing the

pairwise tests would cost about 645 USD. This cost would be

even higher if we used the pairwise test method discussed

by Varadarajan et al. [59], which takes several seconds to

complete one pairwise test. In contrast, our approach costs

about 1 to 3 USD. Importantly, the time and financial cost

of pairwise testing grows quadratically with the number of

instances being verified for co-location.

Note that prior work [41, 59] speeds up pairwise testing

by filtering out instances that do not co-locate with any

other instance. İnci et al. [41] call this filtering step Single

Instance Elimination (SIE). During SIE, the attacker tests all

instances simultaneously and removes instances that test

negative. However, SIE is ineffective in a FaaS environment.

This is because the FaaS orchestrator tends to place mul-

tiple instances onto the same host, as will be discussed in

Section 5.2. Consequently, every instance is co-located with

some other instances and SIE will fail to remove any instance.

4.4 Evaluating Fingerprinting

4.4.1 Accuracy Results. We evaluate fingerprint accu-

racy at a large scale on the public Cloud Run platform in

three different data centers: us-east1, us-central1, and us-
west1. In each data center, we deploy a service and launch

800 concurrently-running container instances. Although a

user can launch up to 1000 container instances from the same

service on Cloud Run, new instance creation slows down as

the instance count approaches 1000, escalating the financial

cost. As a result, we launch 800 instances. We accomplish

this by configuring each instance to just handle one connec-

tion and then establishing 800 WebSocket connections to

these instances.

For each instance, we collect its host CPU model name,

the TSC value, and the real-world time of the measurement.

We also record the true co-locations of the instances (i.e.,

the ground truth) using the scalable validation methodology

discussed in Section 4.3. Our implementation of the method-

ology utilizes a low-noise covert channel based on contention

on the random number generator (RNG) [27]. Because the

RNG is rarely used [27], we find that the likelihood of ob-

serving RNG contention due to background activities is less

than 1%. We require the presence of contention in at least

30 measurements out of 60 to confirm co-location. Hence,

the risk of false positives is extremely small. Finally, we eval-

uate the fingerprint accuracy while varying the rounding

precision of 𝑇𝑏𝑜𝑜𝑡 (i.e., 𝑝𝑏𝑜𝑜𝑡). We repeat our experiments 5

times at different days and different times of day, totaling 15

measurements across three data centers.

To measure fingerprint accuracy, we examine all unique

pairs of instances. For each pair of matching fingerprints,

if the instances are indeed co-located, it is a true positive;

otherwise, it is a false positive. For each pair of mismatching

fingerprints, if the instances are not co-located, it is a true

negative; otherwise, it is a false negative. We call the number

of true and false positives 𝑇𝑃 and 𝐹𝑃 , respectively, and the

number of true and false negatives𝑇𝑁 and 𝐹𝑁 , respectively.

Then, we compute the Fowlkes-Mallows index (FMI) [31],

which is a common metric of clustering performance. FMI is

calculated by

𝐹𝑀𝐼 =
√︁
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙 =

√︂
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
· 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.

FMI ranges from 0 to 1, with 1 indicating that the fingerprints

are perfect (i.e., there are no false positives or false negatives).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

Figure 4 shows the accuracy results averaged across all

measurements and the three data centers under evaluation.

The top plot of Figure 4 shows the FMI for different values

of 𝑝𝑏𝑜𝑜𝑡 ; the bottom plot shows the recall and the precision

for the same values of 𝑝𝑏𝑜𝑜𝑡 . In the figure, 𝑝𝑏𝑜𝑜𝑡 values are

measured in seconds. The error bars represent the standard

deviations. From Figure 4, we observe that when 𝑝𝑏𝑜𝑜𝑡 is

small and, therefore, the rounded 𝑇𝑏𝑜𝑜𝑡 has many significant

digits (left end of Figure 4), fingerprints suffer from low recall

(i.e., many false negatives) and have a low FMI. The reason

is that a small 𝑝𝑏𝑜𝑜𝑡 cannot overcome the noise in measur-

ing 𝑇𝑏𝑜𝑜𝑡 . Hence, the same host gets different fingerprints

in different co-located instances. On the other hand, if 𝑝𝑏𝑜𝑜𝑡
is very large and, therefore, the rounded 𝑇𝑏𝑜𝑜𝑡 has few sig-

nificant digits (right end of Figure 4), different hosts with

similar boot time are rounded to the same value. The result

is many false positives, which reduce the precision and the

FMI.

−4 −3 −2 −1 0 1 2 3

0.8
0.9
1.0

Sc
or

e

FMI

10−4 10−3 10−2 10−1 100 101 102 103

pboot: Rounding Precision of Tboot (seconds)

0.6
0.7
0.8
0.9
1.0

Sc
or

e

Recall Precision

Figure 4. Average fingerprint accuracy with respect to the

rounding precision of𝑇𝑏𝑜𝑜𝑡 (i.e., 𝑝𝑏𝑜𝑜𝑡). Error bars show stan-

dard deviations. Our Gen 1 fingerprints show near-perfect

accuracies with 100ms ≤ 𝑝𝑏𝑜𝑜𝑡 ≤ 1 s.

The sweet spot for 𝑝𝑏𝑜𝑜𝑡 ranges from 100ms to 1 s, where

we reach an average FMI of 0.9999, which is nearly perfect.

Since using a large 𝑝𝑏𝑜𝑜𝑡 can extend the expiration time

of fingerprints, we use 𝑝𝑏𝑜𝑜𝑡 = 1 s by default. With this

value, our fingerprints are highly accurate: among the 15

experiments conducted across three data centers, we find

that 14 generate perfect fingerprints, while one generates
nearly perfect fingerprints.

4.4.2 Fingerprint Expiration Time Results. Our finger-

prints are subject to drifting because we use the reported TSC
frequency, which is inaccurate (Section 4.2). However, hav-

ing long-lived fingerprints is crucial for the attacker to track

hosts and understand instance placement behavior across

many measurements over the time. Hence, in this subsection,

we evaluate the expiration time of Gen 1 fingerprints.

To observe how the 𝑇𝑏𝑜𝑜𝑡 of a host drifts over the time,

we launch a group of 50 long-running container instances

and continuously record their hosts’ fingerprints every hour

for one week. Note that these instances can still be termi-

nated and restarted on a different host over the course of

our measurement. When this happens, we conservatively

assume that the restarted instance runs on a different host.

Consequently, most hosts have a fingerprint history shorter

than a week. We filtered out fingerprint histories that are

shorter than 24 hours.

We conducted our experiment in the us-east1, us-central1,
and us-west1 data centers. After filtering, we obtained 66, 67,

and 79 fingerprint histories in each data center, respectively.

Since we hypothesize that 𝑇𝑏𝑜𝑜𝑡 drifts linearly in Eq. 4.2, we

use linear regression to fit 𝑇𝑏𝑜𝑜𝑡 as a function of real-world

time for each fingerprint history and examine the r-value

of the linear regression. An r-value with an absolute value

close to 1 corresponds to a strong linear correlation [55]. We

found that the minimum absolute r-value across all histories

is 0.9997, suggesting that 𝑇𝑏𝑜𝑜𝑡 indeed drifts linearly.

Based on the𝑇𝑏𝑜𝑜𝑡 of a fingerprint and the slope of its drift-

ing obtained from the linear regression, we can use linear

interpolation to accurately estimate the fingerprint expira-

tion time. The expiration time is the amount of time it takes

for 𝑇𝑏𝑜𝑜𝑡 to drift across a rounding boundary and result in

a different rounded value. Figure 5 shows the CDF of the

estimated expiration time of fingerprints in each of the three

data centers. From the plot, it is clear that most fingerprints

can last a few days before they expire. The average estimated

time for 10% of the fingerprints to expire is about 2 days.

0 1 2 3 4 5 6 7
Fingerprint Expiration Time (days)

0.0
0.1
0.2
0.3
0.4
0.5

CD
F

us-west1
us-central1
us-east1

Figure 5. CDF of the estimated fingerprint expiration time.

Most Gen 1 fingerprints take many days to expire.

4.5 Host Fingerprinting in the Gen 2 Environment

Our fingerprinting technique for Gen 1 is not directly ap-

plicable to the Gen 2 environment due to a hardware vir-

tualization feature known as TSC offsetting [24]. With TSC

offsetting, the hypervisor can configure the hardware to add

an offset to the host TSC when it is read by the guest VM.

Typically, when the hypervisor boots a guest VM, it saves

the current value of the host TSC (call it 𝑡𝑠𝑐0). Then, when

the guest VM asks for a TSC value, the host returns the cur-

rent TSC value minus 𝑡𝑠𝑐0. This creates the illusion to the

guest VM that the TSC was zero when the guest VM booted.

Therefore, using Eq. 4.1, one can only derive the boot time

of the guest VM instead of the host’s.

To circumvent this challenge, we point out that, although

the TSC value read by the guest VM has an unknown offset,

the guest TSC still increments at the same rate as the host’s.

As a result, the guest VM can observe the host’s actual TSC

frequency, which deviates from the reported frequency and

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

is likely to be unique among hosts. Therefore, we propose to

use the actual host TSC frequency to fingerprint a host in

the Gen 2 execution environment.

Surprisingly, obtaining the actual host TSC frequency is

easier in the VM-based Gen 2 environment than in the Linux

container-based Gen 1 environment. This is despite the fact

that VMs typically offer good isolation between the guest

and host. In the Gen 2 environment, KVM exports the refined

host TSC frequency to the guest VM for timekeeping. Since

the attacker program has the root privilege within the guest

VM, it can simply read the refined frequency from the guest

kernel. However, this approach cannot be used to obtain the

refined host TSC frequency in the Gen 1 environment and

use it as 𝑓 in Eq. 4.1, as the sandboxed Linux container can

only interact with gVisor.

Using the same setup for validating Gen 1 fingerprints,

we evaluate the accuracy of Gen 2 fingerprints in us-east1,
us-central1, and us-west1. Our evaluation results show that

the Gen 2 fingerprint is less accurate than the Gen 1 one, due

to its low precision (i.e., its many false positives). Averaged

across all measurements in the three data centers, the Gen 2

fingerprint has an FMI of 0.66, and a precision of 0.48. The

reason for the low precision is that Linux only refines the TSC

frequency to a precision of 1 kHz, causing multiple hosts to

share the same refined frequency. In our experiments across

three data centers, we find that, on average, 2.0 hosts have

the same fingerprint.

Although the Gen 2 fingerprint has relatively low preci-

sion, it cannot produce false negatives. This is because the

host TSC frequency is refined only once at host boot time,

which means that co-located instances must have the same

host TSC frequency. Because Gen 2 fingerprints cannot have

false negatives, when we use the covert-channel approach

of Figure 3 to verify fingerprints, we can perform the tests

in Step 2○ in parallel without worrying about interference
between tests. Also, we can skip Step 3○, which finds false

negatives. Consequently, even if the Gen 2 fingerprint is

less accurate, we can still efficiently generate the co-location

ground truth for numerous container instances.

5 Cloud Run Orchestrator and Co-location

Leveraging our host fingerprinting and co-location verifi-

cation techniques proposed in Section 4, we can accurately

identify physical hosts within a data center and verify in-

stance co-location inexpensively. In Section 5.1, we employ

these two techniques to systematically study Cloud Run’s

instance placement policy, uncovering exploitable behaviors.

In Section 5.2, we propose adversarial instance launching

strategies that exploit these uncovered behaviors, along with

an evaluation of their efficacy and financial cost.

We set up our investigation using three standard Google

Cloud accounts: Account 1, Account 2, and Account 3.

Account 1 is designated as the attacker account, while Ac-

count 2 and Account 3 serve as victim accounts. Following

our threat model of Section 3, we assume that once attacker

and victim are co-located, the attacker can detect victim pro-

gram execution and exfiltrate sensitive information using

prior techniques [25, 41, 45, 54, 59].

When we rely on fingerprints to identify hosts without

verifying them using a covert channel, we refer to these

hosts as the apparent hosts. As Gen 1 fingerprints are nearly

perfect and long-lived (Sections 4.4.1 and 4.4.2), apparent

hosts identified by Gen 1 fingerprints should closely match

real physical hosts. Lastly, our primary focus is on the Gen 1

environment, unless specified otherwise.

5.1 Understanding the Instance Placement Policy

We perform a set of experiments to study the instance place-

ment policy of Cloud Run. Through these experiments, we

seek to answer the following questions about a user launch-

ing numerous container instances: (i) How are the instances

distributed across hosts and managed by Cloud Run (Ex-

periment 1); (ii) Does the orchestrator exhibit a consistent

behavior across launches (Experiment 2); and (iii) What are

the major factors that affect the orchestrator’s behavior (Ex-

periments 3 and 4). In the remainder of this subsection, we

primarily focus on the Gen 1 environment in the us-east1
data center. We will discuss the different execution environ-

ments and data centers at the end of this subsection.

Experiment 1: instance distribution. In this experiment,

we launch 800 instances of the same service, and record the

set of hosts they are placed onto (i.e., their host footprint). We

use the covert-channel approach to generate the co-location

ground truth. We observe that these 800 instances are placed

onto 75 hosts. Moreover, we see that the instance distribution

across the hosts used is close to uniform, with the majority

of hosts running 10 or 11 instances. This behavior is different

from that of a VM environment (e.g., AWS EC2 [4]), where

it is observed that instances from the same account do not

share a host [54, 63].

Observation 1. Container instances of the same service

share hosts, and instance distribution across the hosts used

is close to uniform.

Next, we disconnect from these 800 instances, leaving

them in an idle state, and observe when they are terminated

by the orchestrator (Section 2.2). To record the termination

time, we capture the SIGTERM signal sent by the orches-

trator before it terminates an instance [15]. Upon capturing

SIGTERM, the container reports the current time to a sepa-

rate server and terminates. Figure 6 shows the number of idle

instances as a function of time since disconnecting. From the

plot, we can see that these idle instances are preserved in the

first two minutes. After that, the orchestrator starts to gradu-

ally terminate idle instances. After about 12 minutes, almost

every instance is terminated. This behavior matches Cloud

Run’s documentation [15], which states that idle instances

are preserved for at most 15 minutes.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

0 2 4 6 8 10 12 14 16
Time Since Disconnecting (minutes)

0
200
400
600
800

Nu
m

be
r o

f
Id

le
 In

st
an

ce
s

Figure 6. Number of idle instances after disconnecting from

800 instances, as measured in us-east1. Practically all in-

stances are terminated in 12 minutes after disconnecting.

Observation 2. Cloud Run gradually terminates idle in-

stances over an approximate period of 12 minutes.

Experiment 2: behavior across launches. We study if

this scheduling behavior changes across launches. In this

experiment, we repeat six times the launch of 800 instances

of the same service, and compare the host footprint of each

launch. After each launch, we immediately disconnect from

the 800 instances, putting them into an idle state. Then, we

wait for 45 minutes before the next launch to make sure that

all the old instances are terminated and the service enters a

“cold” state. This cold state will be discussed in Experiment 4.

Upon analyzing the experiment results, we observe that

the instance distribution remains consistent across launches.

We then examine whether instances from different launches

share any hosts. Since the old instances from a previous

launch are terminated before the next launch, it is impossible

to use a covert channel to verify co-location of instances

across launches. We rely solely on fingerprints to identify

hosts in this experiment, thus reporting the apparent hosts.

Figure 7 shows the number of apparent hosts in each

launch (identified by the Launch ID). It also shows the cumu-

lative number of apparent hosts since the first launch. We

observe that each launch occupies a similar number of appar-

ent hosts. Moreover, the growth of the cumulative number

of apparent hosts is minimal, suggesting that the apparent

host footprints are highly overlapped across launches. This

behavior can be caused by a data locality optimization, as the

orchestrator may prefer hosts that already have the container

image from previous launches.

1 2 3 4 5 6
Launch ID

60

80

100

Nu
m

be
r o

f H
os

ts

Cumulative apparent hosts
Apparent hosts

Figure 7. Number of apparent hosts occupied by 800 in-

stances of the same service, as measured in us-east1. The
footprints of apparent hosts are highly overlapped across

launches.

To test the hypothesis of the data locality optimization,

we repeat this experiment using a different service in each

launch. These services are owned by the same account. Be-

fore the experiment, we rebuild the container images of the

services that will be invoked, to ensure that the images of the

services are not cached in any host. Under this configuration,

we still observe a pattern that closely resembles Figure 7.

These experiment results suggest that the orchestrator

tends to place instances from the same account onto a spe-
cific set of hosts. This behavior can be explained by affinity

scheduling (Section 2.2). Affinity scheduling aims to reduce

communication overhead by co-locating instances that fre-

quently interact with each other, which is a likely scenario

for services originating from the same account.

Observation 3. Cloud Run exhibits a consistent behavior

across launches. It prefers a specific set of hosts for con-

tainer instances owned by the same account. We refer to

these preferred hosts as the base hosts.

Experiment 3: different accounts. In this experiment, we

modify Experiment 2 slightly: the services used in launch 1

and 2 are owned by Account 1, the services used in launch 3

and 4 are owned by Account 2, and the services used in

launch 5 and 6 are owned by Account 3. Figure 8 illustrates

the results in a manner similar to Figure 7. We observe that

the cumulative number of apparent hosts establish a step

pattern. When a launch uses a service owned by an account

different from the accounts in previous launches, we see a

large growth in the cumulative number of apparent hosts;

otherwise, the growth is minimal. This observation suggests

that the orchestrator uses different base hosts for different

accounts.

1 (1) 2 (1) 3 (2) 4 (2) 5 (3) 6 (3)
Launch ID (Account ID)

0

200

400

Nu
m

be
r o

f H
os

ts

Cumulative apparent hosts
Apparent hosts

Figure 8. Number of apparent hosts occupied by 800 in-

stances from three different accounts, as measured in us-
east1. The numbers in parenthesis are the account IDs.

Observation 4. The Cloud Run orchestrator uses different

base hosts for different accounts.

Experiment 4: short launch interval. In this experiment,

we repeat Experiment 2 with a short time interval between

launches of 10 minutes. Under this configuration, we see an

interesting orchestrator behavior, as illustrated in Figure 9.

Unlike Figure 7 from Experiment 2, we observe that both

the number of apparent hosts and the cumulative number

of apparent hosts drastically increase after each of the first

three launches. Moreover, the difference between the two

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

curves is small. These results suggest that the orchestrator

places instances to both the hosts used in previous launches

and the new hosts. As a result, after six launches, we have

a host footprint of 264 apparent hosts, which is far higher

than the number of base hosts.

1 2 3 4 5 6
Launch ID

100

200

300

Nu
m

be
r o

f H
os

ts

Cumulative apparent hosts
Apparent hosts

Figure 9. Experiment 2 repeated with a time interval be-

tween launches of 10 minutes, as measured in us-east1. We

observe drastic increases in both the number of apparent

hosts and cumulative number of apparent hosts.

To further investigate this behavior, we repeat this experi-

ment with different launch intervals. We observe that this

behavior only occurs with an interval smaller than 30 min-

utes. Furthermore, when the interval is too short, the number

of new hosts is small. For example, with the 10-minute inter-

val shown in Figure 9, we observe 177 more apparent hosts

after launch 6 than after launch 1. However, with a 2-minute

interval, we observe only 12 more apparent hosts. We also

repeat the experiment with a different service used in each

launch, but we do not observe this behavior.

Based on the aforementioned observations, we hypothe-

size that this behavior is induced by a load-balancing mech-

anism of Cloud Run. The mechanism considers the usage of

the same service within approximately the past 30 minutes.

If the service exhibits a high demand (i.e., repeatedly running

800 concurrent instances in our case), then the orchestrator

will attempt to place some of the instances of the same ser-

vice onto hosts that are not base hosts. As a result, it reduces

the load on the base hosts. We refer to these extra hosts that

are used as helper hosts. After a certain number of repeated

launches, this behavior saturates.

Observation 5. For a service that has a high demand

within less than 30 minutes, Cloud Run appears to use

a load balancer that places instances of the service onto

hosts that are not base hosts (i.e., helper hosts).

Under this hypothesis, in the first launch, since there is no

usage history of the service in the past 30 minutes, instances

are placed onto the base hosts. As we wait for some time

before the next launch, some of the idle instances are ter-

minated. Therefore, in the next launch, the orchestrator has

to create new instances to compensate for the terminated

ones. Since the previous launch has primed the service into a

high-demand state, the orchestrator starts to place the newly-

created instances on the helper hosts to relieve pressure on

the base hosts. This cycle repeats for a few iterations. When

the wait interval between launches is small, the number of

terminated idle instances before the next launch is also small.

Consequently, the orchestrator creates fewer new instances,

thereby occupying fewer helper hosts.

We consistently observe this behavior when repeating the

experiment at different times of the day or using a different

service in the experiment. We also observe that different

services use different sets of helper hosts; these sets are not

mutually exclusive and do overlap. We demonstrate this fact

by repeating Experiment 4 for six episodes; in each episode,

we use a different service that is launched six times with

800 instances every time. In each episode of Experiment

4, we measure the helper host footprint by computing the

difference between the host footprint after the sixth launch

and after the first launch.

Figure 10 shows the results of the experiment. It shows the

number of apparent helper hosts and the cumulative foot-

print of apparent helper hosts after each of the episodes. We

see that the cumulative footprint of apparent helper hosts ex-

pands after each episode. This expansion suggests that each

episode uses new helper hosts not seen in previous episodes.

The increase in the cumulative footprint of helper hosts after

a single episode is less than the number of helper hosts in that

episode, indicating overlaps in helper hosts across different

services. As will be discussed later, an attacker can exploit

this behavior by repeatedly launching instances of multiple

services and therefore obtaining residence on a substantial

portion of Cloud Run hosts within a data center.

1 2 3 4 5 6
Episode

0

100

200

300

Nu
m

be
r o

f H
os

ts

Cumulative apparent helper hosts
Apparent helper hosts

Figure 10. Experiment 4 repeated in six episodes, with a

different service used per episode, as measured in us-east1.
We see growth in the cumulative helper host footprint after
each episode.

Observation 6. Different Cloud Run services use different

but overlapping sets of helper hosts.

Other factors.We investigate other factors that influence

the orchestrator’s behavior. We report four findings. First, we

observe similar placement behavior when launching on dif-

ferent dates and at different times of day. Second, container

instances with different resource specifications (such as CPU

andmemory) share the same base hosts. Third, all nine Cloud

Run data centers in the US exhibit similar placement behav-

ior except for us-central1, where instance placement is more

dynamic. In us-central1, many instances are placed onto dif-

ferent hosts across launches, even if we launch from a cold

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

service in each launch. Fourth, the Gen 2 execution environ-

ment shows similar placement behavior, and Gen 2 instances

can share hosts with Gen 1 instances.

Implications. The existence of base hosts is a double-edged

sword for the attacker. On the one hand, it reduces the un-

certainty on where the victim instances are likely to reside,

making co-location with the victim easier. On the other hand,

base hosts limit the set of hosts where the attacker can reside

and, therefore, the set of hosts that the attacker can explore.

As a result, naively launching attacker instances has a low

chance of co-locating with the victim (Section 5.2), as dif-

ferent accounts often use different base hosts. In practice,

the load-balancing behavior of Cloud Run helps the attacker

to overcome this challenge. For example, the attacker can

prime their services into a high-demand state through re-

peated launches, which help spread attacker instances onto

many helper hosts. This strategy drastically improves the

efficacy of co-location attacks (Section 5.2).

5.2 Co-location with Victims

In this subsection, we evaluate two instance launching strate-

gies for co-location with victims. Our primary metric is the

victim instance coverage, which is the percentage of victim

instances that are co-located with the attacker. Then, we re-

port the financial cost of the attack, the estimated size of the

Cloud Run data centers, and the transferability of our results

to the Gen 2 environment. We conclude with a discussion

on potential optimizations that can enhance attack efficacy.

Evaluation setup. For this evaluation, Account 1 is des-

ignated as the attacker, while Account 2 and Account 3

serve as the victims. We conduct the evaluation across three

data centers: us-east1, us-central1, and us-west1. For each
combination of data center and victim account, we repeat

the measurement three times on different days and at differ-

ent times of day. Co-location between attacker and victim

instances is verified using the covert-channel method de-

scribed in Section 4.3.

In each experiment, we vary the number of victim in-

stances. As the default configuration for Cloud Run services

allows a maximum of 100 instances, we assess configurations

with 20, 50, 100, and 200 victim instances, setting the 100-

instance configuration as the default. Prior work [28] sug-

gests that orchestrators might prefer co-locating instances

with similar resource specifications (such as CPU and mem-

ory) in the same nodes. Accordingly, we vary the size of

the victim instances, using the sizes outlined in Table 1. We

choose Small as the default victim size since it is the stan-

dard configuration for Cloud Run services. We also fix the

attacker instance size to Small.

Strategy 1: naive instance launching. Here, the attacker

simply launches numerous instances from services in a cold

state. This strategy represents a naive attacker who has no

insight into the Cloud Run’s instance placement behavior. In

Table 1. Various container sizes used in our evaluation. Note

that we define these four container sizes for the purpose of

this study; a user can use a size different than these four.

Size # of CPUs Memory

Pico 0.25 256MB

Small (Default) 1 512MB

Medium 2 1GB

Large 4 4GB

our experiment, this naive strategy launches 4, 800 instances

from six services.

Despite the large number of attacker instances, we observe

zero co-location with Account 2 in us-east1 and us-central1,
or with Account 3 in us-east1 and us-west1. We see high

average victim instance coverage only with Account 2 in us-
west1 (100.0%) and with Account 3 in us-central1 (81.0%), as
the base hosts of the attacker and victim happen to be highly

overlapped in the corresponding data centers. Changing the

number of victim instances or their size does not yield signif-

icant variations. This is consistent with our observation that

services from the same account share the same base hosts,

even when they have different resource specifications (Sec-

tion 5.1). Overall, the data indicates that a naive launching

strategy without any insight into Cloud Run’s placement

behaviors is often ineffective.

Strategy 2: optimized instance launching. This strategy

exploits the load-balancing behavior of Cloud Run. The high-

level idea is to prime the attacker service into a high-demand

state by repeatedly launching many instances with an ap-

propriate time interval. This action enables the attacker to

deploy instances onto numerous helper hosts. Given our ob-

servation that different services use different but overlapping

sets of helper hosts (Section 5.1), attacker instances can re-

side on more helper hosts if they utilize multiple services. In

our experiment, the attacker deploys six services. Similar to

Experiment 4 in Section 5.1, the attacker repeatedly launches

800 instances of each service at a 10-minute interval, killing

the instances after each launch except after the last one.

Figure 11 shows the average victim instance coverage

using the optimized launching strategy, with the error bars

indicating standard deviations. In Figure 11a, we vary the

number of victim instances while fixing the victim size to

Small. Conversely, in Figure 11b, we vary the victim size

while keeping the number of victim instances set to 100.

Figure 11a illustrates that our optimized instance launch-

ing strategy is highly effective. With the default configura-

tion of 100 Small victim instances, we observe high victim

instance coverage. From left to right, we see, in us-east1, vic-
tim instance coverages of 97.7% and 99.7% with Account 2

and Account 3, respectively. In us-central1, we see lower
coverages of 61.3% with Account 2 and 90.0% with Ac-

count 3. Finally, in us-west1, we see 100.0% coverage with

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Acc. 2
us-east1 Acc. 3

us-east1 Acc. 2

us-central1 Acc. 3

us-central1 Acc. 2
us-west1 Acc. 3

us-west1

0.0
0.2
0.4
0.6
0.8
1.0

Vi
ct

im
 In

st
an

ce
Co

ve
ra

ge
20 50 100 200

(a) Varying the number of victim instances (20, 50, 100, and 200).

The victim instance size is fixed to Small.

Acc. 2
us-east1 Acc. 3

us-east1 Acc. 2

us-central1 Acc. 3

us-central1 Acc. 2
us-west1 Acc. 3

us-west1

0.0
0.2
0.4
0.6
0.8
1.0

Vi
ct

im
 In

st
an

ce
Co

ve
ra

ge

Pico Small Medium Large

(b) Varying the victim instance size (Pico, Small, Medium, and

Large). The number of victim instances is fixed to 100.

Figure 11. Average victim instance coverage across three

measurements. Error bars represent standard deviations.

“Acc.” is an abbreviation for “Account”. Our optimized launch-

ing strategy can achieve a high victim coverage in different

evaluated data centers.

both Account 2 and Account 3. One potential reason for

the reduced coverage in the us-central1 data center is its

vast size, as will be shown later in this section. Another fac-

tor might be that us-central1 has a more dynamic instance

placement behavior, as discovered in Section 5.1.

Figure 11b shows a similar behavior, as we vary the victim

size while keeping the number of victim instances set to 100.

Overall, considering the data from both Figure 11a and 11b,

we conclude that, in the large majority of cases, the number

or the size of victim instances has no significant influence

on the average victim instance coverage.

Financial cost of the attack. FaaS platforms such as Cloud

Run only charge users for the active time of instances. Since

we disconnect from all the instances after each launch, these

instances are in the idle state between launches and do

not contribute to the cost during this time. The main cost

comes from launching instances. On average, to set up a co-

location attack with our configuration (six attacker services,

six launches per service, and 800 instances per launch), the

estimated average costs are 24 USD, 23 USD, and 27 USD in

us-east1, us-central1, and us-west1, respectively. These costs
are small.

Scale of Cloud Run clusters. To estimate the size of a

Cloud Run cluster, we deploy eight services from each of the

three accounts (Account 1, Account 2, and Account 3) and

use the total 24 services to explore hosts that run Cloud Run

services in the data center. We use the optimized strategy to

launch instances of these services and record the apparent

host footprint of each launch. We launch each service four

times. Then, the size of the Cloud Run cluster is estimated

by counting the number of unique host fingerprints across

all launches. The intuition for using services from different

accounts instead of more services from the same account is

that we can start exploration from different base hosts, and

thus discover new hosts more efficiently.

Figure 12 shows the cumulative number of unique appar-

ent hosts as we aggregate apparent hosts across launches. In

total, these launches found 474 apparent hosts in us-east1,
1702 apparent hosts in us-central1, and 199 apparent hosts

in us-west1. Since the growth of the cumulative number of

unique apparent hosts gradually flattens out in all three data

centers as we include more launches, it is reasonable to use

the total number of unique apparent hosts that we found to

estimate the size of the Cloud Run cluster in each data center.

Using this estimation, in the co-location experiment that we

performed using Strategy 2, the attacker (Account 1) cov-

ered 59%, 53%, and 82% of the hosts in us-east1, us-central1,
and us-west1 on average, respectively.

1 96
Launch ID

0
100
200
300
400
500

Cu
m

ul
at

iv
e

Nu
m

be
r o

f
Un

iq
ue

 A
pp

ar
en

t H
os

ts

us-east1

1 96
Launch ID

0

500

1000

1500

2000
us-central1

1 96
Launch ID

0
50

100
150
200
250

us-west1

Figure 12. Cumulative number of unique apparent hosts

across launches.

Co-location in the Gen 2 environment. We evaluate our

optimized launching strategy in the Gen 2 environment, with

both attacker and victims launching Gen 2 instances. Aver-

aging three measurements in each data center, we observe

victim instance coverage of 87.3% with Account 2 and 88.7%

with Account 3 in us-east1; 40.7%with Account 2 and 75.3%

with Account 3 in us-central1; and 96.0% with Account 2

and 97.3% with Account 3 in us-west1. No significant cov-

erage differences arise when varying the number of victim

instances or size. These results indicate that our launching

strategy is highly effective in the Gen 2 environment as well.

Potential attack optimizations. To occupy an even larger

fraction of Cloud Run hosts within a data center, the attacker

can create more accounts and deploy more services per ac-

count. This approach is similar to the experiment where

we measured the scale of Cloud Run clusters. However, a

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

challenge arises as cloud providers often cap new accounts

to limited resources—e.g., allowing a maximum of only 10

instances per service. For an attacker to be eligible for higher

quotas, the new account needs to sustain a consistent usage

over several months. This limitation results in additional time

and financial costs.

If the attacker intends to repeatedly attack services from

the same victim account, an optimization is to record the fin-

gerprints of hosts used by the victim during the first attack.

These hosts can be the base hosts preferred by the victim.

Therefore, in the subsequent attacks targeting the same vic-

tim, the attacker can focus side-channel attack efforts on

hosts with fingerprints that match the fingerprints recorded

in the first attack.

6 Potential Mitigations

Our two fingerprinting techniques exploit the fact that the

timestamp counter (TSC) value or its frequency are shared

between the host and untrusted user containers. Therefore,

to defend against our techniques, one could mask both the

value and frequency of the host’s TSC through either TSC

emulation or hardware-assisted TSC virtualization.

In the non-virtualized Gen 1 environment, the host can

disable rdtsc and rdtscp in Ring-3 (i.e., userspace) by

configuring the CR4model specific register [24]. By doing so,

the kernel can trap and emulate both instructions. However,

this mitigation also forces user applications to switch to

kernel spacewhen accessing high-precision timers, incurring

high timer access overhead.

The impact of the slower timer accesses depends on the

specific application and its use case. Hence, the actual end-

to-end execution overhead in an application can only be

determined through benchmarking. We identify some ap-

plications where this added end-to-end execution overhead

is likely to matter: (1) real-time systems that process high-

frequency events such as live media or financial data, (2)

database systems using fine-grained timestamps for concur-

rency control, (3) distributed systems employing fine-grained

timestamps for synchronization, and (4) applications char-

acterized by intensive logging and journaling. For instance,

Cassandra’s [30] write latency is reportedly reduced by 43%

on Amazon EC2 instances after switching from the xen
clock source to TSC (the xen clock source requires a context

switch to kernel space to access) [34].

In the virtualized Gen 2 environment, the hypervisor can

also trap and emulate both rdtsc and rdtscp, which, as
in Gen 1, leads to significant timer access overhead. An

alternative that does not add overhead is for the host to

support hardware-assisted TSC virtualization features, such

as TSC offseting and scaling [24, 39]. These features are

available on modern Intel and AMD processors and were

primarily developed for live VM migration.

Besides emulating or virtualizing the TSC, cloud vendors

can also adopt scheduling algorithms that reduce the chance

of co-location [6, 37] or mitigate the risk of side-channel

attacks after co-location is achieved [58]. Finally, they can

detect and stop ongoing side-channel attacks [19, 38, 66, 67].

7 Related Work

Co-location attacks in the public cloud. In 2009, Risten-

part et al. [54] conducted the first study of VM co-location at-

tacks on Amazon’s EC2 service using network probing. To as-

sess Amazon’s defenses in response to this work, Xu et al. [63]

investigated VM co-location attacks on Amazon EC2 service

in 2015, by employing network scanning. However, these

network-based techniques have become obsolete in the mod-

ern cloud environment, due to the widespread adoption of

the virtual private cloud (VPC) [18], which logically isolates

the networking environments of different accounts. To over-

come the challenge posed by VPC, Varadarajan et al. [59]

employed a pairwise covert-channel, based on memory bus

contention explored by Wu et al. [62], to investigate VM

co-location attacks. However, due to the scalability issue of

pairwise testing, their approach is unsuitable for the modern

FaaS environment, where it is necessary to verify co-location

of thousands of instances.

Exploiting cloud orchestrators. Makrani et al. [47] pro-

posed an attack named Cloak & Co-locate, which employs

adversarial machine learning to generate fake resource us-

age traces, fooling machine learning-based resource provi-

sioning systems [3, 60] to co-locate attacker instances with

the victim. However, their evaluation is limited to a private

mini-cloud running on local clusters. Concurrent to Cloak

& Co-locate, Fang et al. [28] proposed Repttack, suggesting

that the attacker can launch instances with requirements

and preferences that replicate the victim’s to increase the

likelihood of co-location. However, on Cloud Run, we do not

observe any significant increase in co-location rate when

the attacker instance has the same configuration as the vic-

tim (Section 5.2).

Remote device fingerprinting. Kohno et al. [43] exploited

the clock skew in system time that is accumulated over time

to fingerprint remote physical devices. They monitor such

skew through timestamps included in TCP packets. How-

ever, for contemporary systems where clocks are well syn-

chronized to the real-world time through the network time

protocol (NTP) [48], such accumulated clock skew is not

detectable using coarse-grained TCP timestamps [52], which

have the resolution of only one millisecond [9]. Compared

to their approach, our fingerprinting method for Gen 1 re-

lies on the host’s boot time instead of clock skew. Further,

our fingerprinting method for Gen 2 detects clock frequency
skews, making it effective even if clocks are well synchro-

nized through NTP.

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

8 Conclusion

In this paper, we presented the first comprehensive study

on risks of and techniques for co-location attacks in modern

public cloud FaaS environments. We introduced two novel

physical host fingerprinting techniques based on the times-

tamp counter to aid in reverse engineering instance place-

ment policies. Using host fingerprints, we proposed a cost-

effective methodology for large-scale instance co-location

verification. With these techniques, we conducted an exten-

sive study on Google Cloud Run, discovering an exploitable

instance placement behavior. Based on our findings, we de-

vised an efficient instance launching strategy that deploys

attacker instances across a large portion of Cloud Run cluster

hosts within a data center. Our strategy attains high attack

efficacy at minimal financial cost.

Acknowledgments

We thank the anonymous reviewers and the paper’s shep-

herd, Jacob R. Lorch, for their valuable feedback and com-

ments. We particularly appreciate the suggestion of using

TSC scaling as a mitigation. This research was funded in part

by an Intel Resilient Architectures and Robust Electronics

(RARE) gift; by ACE, one of the seven centers in JUMP 2.0, a

Semiconductor Research Corporation (SRC) program spon-

sored by DARPA; and by NSF grants 1942888, 1954521, and

1956007.

References

[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.

Firecracker: Lightweight Virtualization for Serverless Applications. In

17th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020. USENIX
Association.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-

sar Pereida García, and Nicola Tuveri. 2019. Port Contention for

Fun and Profit. In 2019 IEEE Symposium on Security and Privacy,
SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 870–887.
https://doi.org/10.1109/SP.2019.00066

[3] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram

Venkataraman, Minlan Yu, and Ming Zhang. 2017. CherryPick: Adap-

tively Unearthing the Best Cloud Configurations for Big Data Analytics.

In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29, 2017. USENIX
Association, 469–482.

[4] Amazon AWS. 2023. Secure and resizable cloud compute - Amazon

EC2 - Amazon Web Services. https://aws.amazon.com/ec2/.
[5] Amazon AWS. 2023. Serverless Computing - AWS Lambda - Amazon

Web Services. https://aws.amazon.com/lambda/.
[6] Yossi Azar, Seny Kamara, Ishai Menache, Mariana Raykova, and

F. Bruce Shepherd. 2014. Co-Location-Resistant Clouds. In Proceedings
of the 6th edition of the ACM Workshop on Cloud Computing Security,
CCSW ’14, Scottsdale, Arizona, USA, November 7, 2014. ACM, 9–20.

https://doi.org/10.1145/2664168.2664179
[7] Microsoft Azure. 2023. Azure Functions – Serverless Functions in

Computing | Microsoft Azure. https://azure.microsoft.com/en-us/
products/functions.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-

ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kur-

mus. 2019. SMoTherSpectre: Exploiting Speculative Execution through

Port Contention. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, No-
vember 11-15, 2019. ACM, 785–800. https://doi.org/10.1145/3319535.
3363194

[9] David A. Borman, Bob Braden, Van Jacobson, and Richard Scheffeneg-

ger. 2014. TCP Extensions for High Performance. RFC 7323 (2014),

1–49. https://doi.org/10.17487/RFC7323
[10] Google Cloud. 2023. About container instance autoscaling | Cloud Run

Documentation | Google Cloud. https://cloud.google.com/run/docs/
about-instance-autoscaling.

[11] Google Cloud. 2023. About execution environments | Cloud Run

Documentation | Google Cloud. https://cloud.google.com/run/docs/
about-execution-environments.

[12] Google Cloud. 2023. Cloud Functions | Google Cloud. https://cloud.
google.com/functions.

[13] Google Cloud. 2023. Cloud Run: Container to production in seconds |

Google Cloud. https://cloud.google.com/run/.
[14] Google Cloud. 2023. Cloud Run release notes | Cloud Run Documenta-

tion | Google Cloud. https://cloud.google.com/run/docs/release-notes.
[15] Google Cloud. 2023. Container runtime contract | Cloud RunDocumen-

tation | Google Cloud. https://cloud.google.com/run/docs/container-
contract.

[16] Google Cloud. 2023. Invoking with an HTTPS Request | Cloud Run

Documentation | Google Cloud. https://cloud.google.com/run/docs/
triggering/https-request.

[17] Google Cloud. 2023. Pricing | Cloud Run | Google Cloud. https://cloud.
google.com/run/pricing.

[18] Google Cloud. 2023. Virtual Private Cloud (VPC) | Google Cloud.

"https://cloud.google.com/vpc".
[19] Cloudflare. 2023. Security Model - Cloudflare Workers docs. https:

//developers.cloudflare.com/workers/learning/security-model/.
[20] Kubernetes Contributors. 2023. Kubernetes Scheduler | Kuber-

netes. https://kubernetes.io/docs/concepts/scheduling-eviction/kube-
scheduler/.

[21] Linux Contributors. 2023. Linux Source Code. https://github.com/
torvalds/linux/blob/e62252bc55b6d4eddc6c2bdbf95a448180d6a08d/
arch/x86/kernel/tsc.c.

[22] Memcached Contributors. 2018. memcached - a distributed memory

object caching system. https://memcached.org/.
[23] Wikipedia Contributors. 2023. Pentium III - Wikipedia. https://en.

wikipedia.org/wiki/Pentium_III.
[24] Intel Corparation. Dec, 2021. Intel 64 and IA-32 Architectures Software

Developer’s Manual. Combined Volumes.

[25] Christina Delimitrou and Christos Kozyrakis. 2017. Bolt: I Know

What You Did Last Summer... In The Cloud. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2017, Xi’an,
China, April 8-12, 2017. ACM, 599–613. https://doi.org/10.1145/3037697.
3037703

[26] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean M. Tullsen.

2017. Prime+Abort: A Timer-Free High-Precision L3 Cache Attack

using Intel TSX. In 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. USENIX Associa-

tion, 51–67. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/disselkoen

[27] Dmitry Evtyushkin and Dmitry V. Ponomarev. 2016. Covert Channels

through Random Number Generator: Mechanisms, Capacity Estima-

tion andMitigations. In Proceedings of the 2016 ACM SIGSACConference
on Computer and Communications Security, CCS 2016, Vienna, Austria,
October 24-28, 2016. ACM, 843–857. https://doi.org/10.1145/2976749.
2978374

https://doi.org/10.1109/SP.2019.00066
https://aws.amazon.com/ec2/
https://aws.amazon.com/lambda/
https://doi.org/10.1145/2664168.2664179
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.17487/RFC7323
https://cloud.google.com/run/docs/about-instance-autoscaling
https://cloud.google.com/run/docs/about-instance-autoscaling
https://cloud.google.com/run/docs/about-execution-environments
https://cloud.google.com/run/docs/about-execution-environments
https://cloud.google.com/functions
https://cloud.google.com/functions
https://cloud.google.com/run/
https://cloud.google.com/run/docs/release-notes
https://cloud.google.com/run/docs/container-contract
https://cloud.google.com/run/docs/container-contract
https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/docs/triggering/https-request
https://cloud.google.com/run/pricing
https://cloud.google.com/run/pricing
https://cloud.google.com/vpc
https://developers.cloudflare.com/workers/learning/security-model/
https://developers.cloudflare.com/workers/learning/security-model/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://github.com/torvalds/linux/blob/e62252bc55b6d4eddc6c2bdbf95a448180d6a08d/arch/x86/kernel/tsc.c
https://github.com/torvalds/linux/blob/e62252bc55b6d4eddc6c2bdbf95a448180d6a08d/arch/x86/kernel/tsc.c
https://github.com/torvalds/linux/blob/e62252bc55b6d4eddc6c2bdbf95a448180d6a08d/arch/x86/kernel/tsc.c
https://memcached.org/
https://en.wikipedia.org/wiki/Pentium_III
https://en.wikipedia.org/wiki/Pentium_III
https://doi.org/10.1145/3037697.3037703
https://doi.org/10.1145/3037697.3037703
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://doi.org/10.1145/2976749.2978374
https://doi.org/10.1145/2976749.2978374

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Z. N. Zhao, A. Morrison, C. W. Fletcher, J. Torrellas

[28] Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi, Avesta

Sasan, Khaled N. Khasawneh, Setareh Rafatirad, and Houman Homay-

oun. 2022. Repttack: Exploiting Cloud Schedulers to Guide Co-Location

Attacks. In 29th Annual Network and Distributed System Security Sym-
posium, NDSS 2022, San Diego, California, USA, April 24-28, 2022. The
Internet Society. https://www.ndss-symposium.org/ndss-paper/auto-
draft-237/

[29] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçberber, Stavros

Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak,

Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012.

Clearing the clouds: a study of emerging scale-out workloads on mod-

ern hardware. In Proceedings of the 17th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS 2012, London, UK, March 3-7, 2012, Tim Harris and Michael L.

Scott (Eds.). ACM, 37–48. https://doi.org/10.1145/2150976.2150982
[30] Apache Software Foundation. 2023. Apache Cassandra | Apache Cas-

sandra Documentation. https://cassandra.apache.org/_/index.html.
[31] Edward B Fowlkes and Colin LMallows. 1983. Amethod for comparing

two hierarchical clusterings. J. Amer. Statist. Assoc. 78, 383 (1983), 553–
569.

[32] Google. 2023. Google Docs. https://docs.google.com/.
[33] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018.

Translation Leak-aside Buffer: Defeating Cache Side-channel Protec-

tions with TLB Attacks. In 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018. USENIX Associ-

ation, 955–972. https://www.usenix.org/conference/usenixsecurity18/
presentation/gras

[34] Brendan Gregg. 2021. The Speed of Time. https://www.brendangregg.
com/blog/2021-09-26/the-speed-of-time.html.

[35] Daniel Gruss, Clémentine Maurice, KlausWagner, and StefanMangard.

2016. Flush+Flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 279–299.

[36] gVisor Contributors. 2023. The Container Security Platform | gVisor.

https://gvisor.dev/.
[37] Yi Han, Tansu Alpcan, Jeffrey Chan, Christopher Leckie, and Benjamin

I. P. Rubinstein. 2016. A Game Theoretical Approach to Defend Against

Co-Resident Attacks in Cloud Computing: Preventing Co-Residence

Using Semi-Supervised Learning. IEEE Transactions on Information
Forensics and Security 11, 3 (2016), 556–570. https://doi.org/10.1109/
TIFS.2015.2505680

[38] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram

Vishwanath, and Mohit Tiwari. 2015. Understanding contention-based

channels and using them for defense. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA). IEEE,
639–650.

[39] Advanced Micro Devices Inc. June, 2023. AMD64 Architecture Pro-

grammer’s Manual. Volumes 1-5.

[40] Docker Inc. 2023. Docker: Accelerated, Containerized Application

Development. https://www.docker.com/.
[41] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui Apecechea,

Thomas Eisenbarth, and Berk Sunar. 2015. Seriously, get off my cloud!

Cross-VM RSA Key Recovery in a Public Cloud. IACR Cryptol. ePrint
Arch. (2015), 898. http://eprint.iacr.org/2015/898

[42] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark

suite and evaluation methodology for latency-critical applications. In

2016 IEEE International Workshop/Symposium on Workload Characteri-
zation (IISWC). IEEE, 1–10.

[43] Tadayoshi Kohno, Andre Broido, and Kimberly C. Claffy. 2005. Remote

Physical Device Fingerprinting. In 2005 IEEE Symposium on Security
and Privacy (S&P 2005), 8-11 May 2005, Oakland, CA, USA. IEEE Com-

puter Society, 211–225. https://doi.org/10.1109/SP.2005.18
[44] Redis Labs. 2022. Redis In-Memory Data Structure. https://redis.io.

[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.

2015. Last-Level Cache Side-Channel Attacks are Practical. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 605–622. https://doi.org/10.
1109/SP.2015.43

[46] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso,

and Christos Kozyrakis. 2014. Towards energy proportionality for

large-scale latency-critical workloads. In ACM/IEEE 41st International
Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN,
USA, June 14-18, 2014. IEEE Computer Society, 301–312. https:
//doi.org/10.1109/ISCA.2014.6853237

[47] Hosein Mohammadi Makrani, Hossein Sayadi, Najmeh Nazari,

Khaled N. Khasawneh, Avesta Sasan, Setareh Rafatirad, and Houman

Homayoun. 2021. Cloak & Co-locate: Adversarial Railroading of Re-

source Sharing-based Attacks on the Cloud. In 2021 International Sym-
posium on Secure and Private Execution Environment Design (SEED),
Washington, DC, USA, September 20-21, 2021. IEEE, 1–13. https:
//doi.org/10.1109/SEED51797.2021.00011

[48] David L. Mills, JimMartin, Jack L. Burbank, andWilliam T. Kasch. 2010.

Network Time Protocol Version 4: Protocol and Algorithms Specifica-

tion. RFC 5905 (2010), 1–110. https://doi.org/10.17487/RFC5905
[49] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk

Sunar. 2019. MemJam: A false dependency attack against constant-time

crypto implementations. International Journal of Parallel Programming
47, 4 (2019), 538–570.

[50] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks

and Countermeasures: The Case of AES. In Cryptographers’ track at
the RSA conference. 1–20.

[51] Colin Percival. 2005. Cache missing for fun and profit. https://www.
daemonology.net/papers/cachemissing.pdf.

[52] Libor Polčák, Jakub Jirásek, and Petr Matoušek. 2013. Comment on “re-

mote physical device fingerprinting”. IEEE Transactions on Dependable
and Secure Computing 11, 5 (2013), 494–496.

[53] Alessandro Randazzo and Ilenia Tinnirello. 2019. Kata Containers: An

Emerging Architecture for Enabling MEC Services in Fast and Secure

Way. In Sixth International Conference on Internet of Things: Systems,
Management and Security, IOTSMS 2019, Granada, Spain, October 22-
25, 2019. IEEE, 209–214. https://doi.org/10.1109/IOTSMS48152.2019.
8939164

[54] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Sav-

age. 2009. Hey, You, Get Off of My Cloud: Exploring Information

Leakage in Third-Party Compute Clouds. In Proceedings of the 2009
ACM Conference on Computer and Communications Security, CCS
2009, Chicago, Illinois, USA, November 9-13, 2009. 199–212. https:
//doi.org/10.1145/1653662.1653687

[55] Sheldon M Ross. 2017. Introductory Statistics. Academic Press.

[56] Eric Schurman and Jake Brutlag. 2009. The user and business impact

of server delays, additional bytes, and http chunking in web search. In

Velocity Web Performance and Operations Conference. O’Reilly Media.

[57] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos.

2022. TLB;DR: Enhancing TLB-based Attacks with TLB Desyn-

chronized Reverse Engineering. In 31st USENIX Security Symposium
(USENIX Security 22). 989–1007.

[58] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael M. Swift.

2014. Scheduler-based Defenses against Cross-VM Side-channels.

In Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014, Kevin Fu and Jaeyeon Jung (Eds.).

USENIX Association, 687–702. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/varadarajan

[59] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and

Michael M. Swift. 2015. A Placement Vulnerability Study in Multi-

Tenant Public Clouds. In 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015. USENIX Associ-

ation, 913–928. https://www.usenix.org/conference/usenixsecurity15/

https://www.ndss-symposium.org/ndss-paper/auto-draft-237/
https://www.ndss-symposium.org/ndss-paper/auto-draft-237/
https://doi.org/10.1145/2150976.2150982
https://cassandra.apache.org/_/index.html
https://docs.google.com/
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.brendangregg.com/blog/2021-09-26/the-speed-of-time.html
https://www.brendangregg.com/blog/2021-09-26/the-speed-of-time.html
https://gvisor.dev/
https://doi.org/10.1109/TIFS.2015.2505680
https://doi.org/10.1109/TIFS.2015.2505680
https://www.docker.com/
http://eprint.iacr.org/2015/898
https://doi.org/10.1109/SP.2005.18
https://redis.io
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/ISCA.2014.6853237
https://doi.org/10.1109/ISCA.2014.6853237
https://doi.org/10.1109/SEED51797.2021.00011
https://doi.org/10.1109/SEED51797.2021.00011
https://doi.org/10.17487/RFC5905
https://www.daemonology.net/papers/cachemissing.pdf
https://www.daemonology.net/papers/cachemissing.pdf
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://doi.org/10.1109/IOTSMS48152.2019.8939164
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/varadarajan
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/varadarajan
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan

Everywhere All at Once: Co-Location Attacks on Public Cloud FaaS ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

technical-sessions/presentation/varadarajan
[60] Shivaram Venkataraman, Zongheng Yang, Michael J. Franklin, Ben-

jamin Recht, and Ion Stoica. 2016. Ernest: Efficient Performance Predic-

tion for Large-Scale Advanced Analytics. In 13th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2016, Santa
Clara, CA, USA, March 16-18, 2016. USENIX Association, 363–378.

[61] Pepe Vila, Boris Köpf, and José F. Morales. 2019. Theory and Practice

of Finding Eviction Sets. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019. IEEE, 39–54.
https://doi.org/10.1109/SP.2019.00042

[62] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the

Hyper-space: High-speed Covert Channel Attacks in the Cloud. In Pro-
ceedings of the 21th USENIX Security Symposium, Bellevue,WA, USA, Au-
gust 8-10, 2012. USENIXAssociation, 159–173. https://www.usenix.org/
conference/usenixsecurity12/technical-sessions/presentation/wu

[63] Zhang Xu, Haining Wang, and Zhenyu Wu. 2015. A Measurement

Study on Co-residence Threat inside the Cloud. In 24th USENIX Secu-
rity Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015. USENIX Association, 929–944. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/xu

[64] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.

Fletcher, Roy H. Campbell, and Josep Torrellas. 2019. Attack Directo-

ries, Not Caches: Side Channel Attacks in a Non-Inclusive World. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 888–904. https://doi.org/10.1109/SP.
2019.00004

[65] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High

Resolution, Low Noise, L3 Cache Side-Channel Attack. In Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August
20-22, 2014. USENIX Association, 719–732. https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

[66] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. 2016. CloudRadar: A

real-time side-channel attack detection system in clouds. In Research in
Attacks, Intrusions, and Defenses: 19th International Symposium, RAID
2016, Paris, France, September 19-21, 2016, Proceedings 19. Springer,
118–140.

[67] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. 2011.

HomeAlone: Co-residency Detection in the Cloud via Side-Channel

Analysis. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,
22-25 May 2011, Berkeley, California, USA. IEEE Computer Society,

313–328. https://doi.org/10.1109/SP.2011.31
[68] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.

2014. Cross-Tenant Side-Channel Attacks in PaaS Clouds. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS 2014, Scottsdale, AZ, USA, November 3-7, 2014.
ACM, 990–1003. https://doi.org/10.1145/2660267.2660356

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/varadarajan
https://doi.org/10.1109/SP.2019.00042
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/xu
https://doi.org/10.1109/SP.2019.00004
https://doi.org/10.1109/SP.2019.00004
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/SP.2011.31
https://doi.org/10.1145/2660267.2660356

	Abstract
	1 Introduction
	2 Background
	2.1 Microarchitectural Side Channels
	2.2 Function-as-a-Service
	2.3 The Cloud Run Platform
	2.4 Timekeeping in x86

	3 Threat Model
	4 Host Fingerprinting in the Wild
	4.1 Overview
	4.2 Deriving the Boot Time from the TSC Value
	4.3 Verifying Instance Co-location in a Scalable Manner
	4.4 Evaluating Fingerprinting
	4.5 Host Fingerprinting in the Gen 2 Environment

	5 Cloud Run Orchestrator and Co-location
	5.1 Understanding the Instance Placement Policy
	5.2 Co-location with Victims

	6 Potential Mitigations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

