
Jamais Vu: Thwarting Microarchitectural Replay Attacks

Dimitrios Skarlatos†∗, Zirui Neil Zhao†, Riccardo Paccagnella, Christopher W. Fletcher, Josep Torrellas
{skarlat2, ziruiz6, rp8, cwfletch, torrella}@illinois.edu

University of Illinois at Urbana-Champaign, IL, USA
† Authors contributed equally to this work.

ABSTRACT

Microarchitectural Replay Attacks (MRAs) enable an attacker to

eliminate the measurement variation in potentially any microarchi-

tectural side channel—even if the victim instruction is supposed to

execute only once. In an MRA, the attacker forces pipeline flushes

in order to repeatedly re-execute the victim instruction and denoise

the channel. MRAs are not limited to transient execution attacks:

the replayed victim can be an instruction that will eventually retire.

This paper presents the first technique to thwart MRAs. The tech-

nique, called Jamais Vu, detects when an instruction is squashed.

Then, as the instruction is re-inserted into the pipeline, Jamais Vu

automatically places a fence before it to prevent the attacker from

squashing it again. This paper presents several Jamais Vu designs

that offer different trade-offs between security, execution overhead,

and implementation complexity. One design, called Epoch-Loop-

Rem, effectively mitigates MRAs, has an average execution time

overhead of 13.8% in benign executions, and only needs counting

Bloom filters. An even simpler design, called Clear-on-Retire, has

an average execution time overhead of only 2.9%, although it is less

secure.

CCS CONCEPTS

• Security and privacy→ Side-channel analysis and counter-

measures.

KEYWORDS

Side-channel countermeasures, Processor design, Replay attack

ACM Reference Format:

Dimitrios Skarlatos, Zirui Neil Zhao, Riccardo Paccagnella, Christopher W.

Fletcher, and Josep Torrellas. 2021. Jamais Vu: Thwarting Microarchitectural

Replay Attacks. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3445814.3446716

∗Now at Carnegie Mellon University (dskarlat@cs.cmu.edu).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446716

1 INTRODUCTION

The microarchitecture of modern computer systems creates many

side channels that allow an attacker running on a different process

to exfiltrate execution information from a victim. Indeed, hardware

resources such as caches [38, 43, 45, 59–61], TLBs [22], branch

predictors [1, 16, 17], load-store units [39], execution ports [4, 6, 21],

functional units [4, 5], and DRAM main memory [46] have all been

shown to leak information.

Luckily, a limitation of these microarchitecural side channels is

that they are often very noisy. To extract information, the execution

of the attacker and the victim processes has to be carefully orches-

trated [43, 45, 60], and often does not work as planned. Hence, the

attacker needs to rely onmany executions of the victim code section

to obtain valuable information. Further, secrets in code sections that

are executed only once or only a few times are hard to exfiltrate.

Unfortunately, a recently-introduced type of attack called Mi-

croarchitectural Replay Attack (MRA) [50] is able to eliminate the

measurement variation in (i.e., to denoise) most microarchitecural

side channels. This is the case even if the victim runs only once.

Such capability makes the plethora of existing side-channel attacks

look formidable and suggests the potential for a new wave of pow-

erful side-channel attacks.

MRAs use the fact that, in out-of-order cores, pipeline squashes

due to events such as exceptions, branch mispredictions, and mem-

ory consistency model violations trigger the re-execution of dy-

namic instructions. Hence, in an MRA, the attacker repeatedly

squashes one or more instructions to force the squash and re-

execution of a younger victim instruction Vmany times. This ability

enables the attacker to cleanly observe the side-effects of V.

MRAs are powerful because they exploit a central mechanism in

modern processors: out-of-order executionwith in-order retirement.

Moreover, MRAs are not limited to transient execution attacks: the

instruction V that is replayed can be a correct instruction that will

eventually retire. Finally, MRAs come in many forms. While the

first MRA [50] exposed the side effects of V by repeatedly causing

a page fault on an older instruction, similar results can be attained

with other events that trigger pipeline flushes.

To thwart MRAs, one has to eliminate instruction replay or at

least bound the number of replays that a victim instruction V may

suffer. The goal is to deny the attacker the opportunity to see many

executions of V.

This paper presents the first mechanism to thwart MRAs. We call

it Jamais Vu. The simple idea is to record the instructions that are

squashed. Then, when any of these instructions is re-inserted into

the Reorder Buffer (ROB), Jamais Vu automatically places a fence

before it to prevent the attacker from squashing the instruction

execution again. In reality, pipeline refill after a squash may not

1061

https://www.acm.org/publications/policies/artifact-review-and-badging-current

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

bring in the same instructions that were squashed, or not in the

same order. Consequently, Jamais Vu has to be carefully designed.

At a high level, there are two main design questions to answer:

how to record the squashed instructions and for how long to keep

the record of them. Jamais Vu presents several designs that give

different answers to these questions, effectively providing different

trade-offs between security, execution overhead, and implementa-

tion complexity.

Architectural simulations using SPEC17 applications show the

effectiveness of the Jamais Vu designs. One design, called Epoch-

Loop-Rem, effectively mitigates MRAs, has an average execution

time overhead of 13.8% in benign executions, and only needs count-

ing Bloom filters associated with the ROB. An even simpler design,

called Clear-on-Retire, has an average execution time overhead of

only 2.9%, although it is less secure.

The contributions of this paper are as follows:

• Jamais Vu, the first defense mechanism to thwart MRAs. It selec-

tively fences instructions to prevent replays.

• Several designs of Jamais Vu that provide different tradeoffs

between security, execution overhead, and complexity.

• An evaluation of these designs using simulations.

2 BACKGROUND

2.1 Microarchitectural Side-Channel Attacks

Microarchitectural side channels allow an attacker to exploit timing

variations in accessing a shared resource to learn information about

a victim process’ execution. Side channel attacks have been demon-

strated that rely on a variety of microarchitectural resources includ-

ing CPU caches [14, 20, 24, 25, 33, 38, 43, 45, 59, 60, 62], TLBs [22], ex-

ecution ports [4, 6, 21], functional units [2, 5, 56], cache banks [61],

the branch predictor [1, 16, 17] and DRAM row buffers [46]. A

common challenge for these attacks is the need to account for

noise [19]. To solve this challenge, most existing attacks rely on

multiple executions of the victim (e.g., [1, 24, 25, 38, 40, 43, 60–62]).

2.2 Out-of-Order Execution

Dynamically-scheduled processors [51] execute data-independent

instructions in parallel, out of program order, and thereby exploit

instruction-level parallelism [28] to improve performance. Instruc-

tions enter the ROB in program order, execute possibly out of

program order, and finally retire (i.e., are removed) from the ROB in

program order [32]. After retirement, writes merge with the caches

in an order allowed by the memory consistency model.

2.3 Microarchitectural Replay Attacks

A Microarchitectural Replay Attack (MRA) [50] uses one or more

instructions to repeatedly trigger pipeline flushes, therefore forcing

the re-execution of a younger instruction I multiple times. This ca-

pability enables the attacker to observe any side-effects of Imultiple

times, eliminating the measurement noise.

Skarlatos et al. [50] introduced MRAs by using a malicious Op-

erating System (OS) to repeatedly trigger page faults on a memory

access instruction in an SGX environment. Specifically, the OS

picks a memory access instruction called Replay Handle that occurs

shortly before a security-sensitive instruction I. The OS sets up the

attack by flushing the TLB entry that stores the virtual-to-physical

translation of the replay handle access, and clearing the Present bit

of the corresponding page table entry. The OS allows the program

to resume execution and execute the replay handle. A TLB miss

occurs, followed by a page walk. The instructions following the

replay handle, including I, execute in the shadow of the page walk,

creating side effects: they leave some state in the cache subsystem

or create contention for hardware structures in the core. This allows

an attacker thread running in the system to perform a measurement

of the secret data. At the end of the page walk, the hardware raises

a page fault exception and squashes the instructions in the pipeline.

The OS is then invoked to handle the page fault, but chooses to keep

the Present bit cleared. The program then resumes and re-executes

the replay handle, creating a TLB miss and page walk again. The

instructions following the replay handle, including I, execute again

until a pipeline flush occurs. This process is repeated as many times

as desired until the attacker extracts the secret information.

MRAs are more general than the specific instantiation proto-

typed by Skarlatos et al. [50]. For example, there are multiple events

that cause a pipeline flush, such as various exceptions, branch mis-

predictions, memory consistency model violations, and interrupts.

Moreover, to trigger the repeated pipeline flushes, one does not

need a privileged process. For example, Appendix A provides evi-

dence, for the first time, that memory consistency model violations

triggered by a non-privileged process can also create MRAs.

In this paper, we refer to the instruction that causes the pipeline

flush as the Squashing (S) instruction; we refer to the younger

instructions in the ROB that the Squashing one squashes as the

Victims (V). The type of Victim instruction that the attacker wants to

replay is onewhose usage of and/or contention for a shared resource

depends on a secret. We call such an instruction a transmitter. Loads

are obvious transmitters, as they use the shared cache hierarchy.

However, many instructions can be transmitters, including those

that use functional units.

3 THWARTING MRAS

3.1 Understanding the Types of MRAs

MRAs come in many forms. Table 1 shows three orthogonal

characteristics that can help us understand these threats. The first

one is the source of the squash. Recall that there are many sources,

namely various exceptions (e.g., page faults [50]), branch mispredic-

tions, memory consistency model violations as shown in Appendix

A, and interrupts [53]. With some sources, a single Squashing in-

struction can trigger pipeline flushes repeatedly, while with others,

a Squashing instruction can only flush the pipeline a very limited

number of times. Examples of the former are attacker-controlled

page faults and memory consistency model violations; examples of

the latter are branch mispredictions. The former can create more

leakage.

Moreover, some sources trigger the flush when the Squashing

instruction is at the ROB head, while others can do it at any position

in the ROB. The former include exceptions, while the latter include

branch mispredictions and memory consistency violations. The

former create more leakage because they typically squash and

replay more Victims.

Figure 1(a) shows an example where repeated exceptions on one

or more instructions inst_i can squash and replay a transmitter

1062

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

1 inst_1

2 inst_2

3 ...

4 transmit(x)

(a) Straight-
line code
where the
attacker
can cause
exceptions.

1 if (cond_1) {...}

2 else {...}

3 if (cond_2) {...}

4 else {...}

5 ...

6 transmit(x)

(b) Sequence of branches
where the attacker can
cause mispredictions.

1 if (i == expr) //always false

2 x = secret;

3 else

4 x = 0;

5 transmit(x);

(c) Condition-dependent transmitter.

1 if (i == expr) //always false

2 transmit(x);

(d) Transient transmitter.

1 for i in 1..N

2 if (i == expr) //always false

3 x = secret;

4 else

5 x = 0;

6 transmit(x);

(e) Condition-dependent transmitter in
a loop with an iteration-independent se-
cret.

1 for i in 1..N

2 if (i == expr) //always false

3 transmit(x);

(f) Transient transmitter in a loopwith an
iteration-independent secret.

1 for i in 1..N

2 if (i == expr) //always false

3 transmit(x[i]);

(g) Transient transmitter in a loopwith an
iteration-dependent secret.

Figure 1: Code snippets where an attacker can use an MRA to denoise the address accessed by the transmit load.

Table 1: Characteristics of microarchitectural replay at-

tacks.

Characteristic Why It Matters

Source of Determines: (i) the number of pipeline

squash? flushes and (ii) where in the ROB the

flush occurs

Victim is transient? If yes, it can leak a wider variety of secrets

Victim is in a loop If yes, it is harder to defend:

accessing the same (i) leaks from multiple iterations add up

secret every iteration? (ii) multi-instance squashes

many times. This is one of the examples used in [50]. Figure 1(b)

shows an example where attacker-instigated mispredictions in mul-

tiple branches can result in the repeated squash and replay of a

transmitter. Different branch structures and different orders of

branch resolution result in different replay counts.

The second characteristic in Table 1 is whether the Victim is tran-

sient. Transient instructions are speculatively-executed dynamic

instructions that will not commit. MRAs can target both transient

and non-transient instructions. Transient Victims are more con-

cerning: since the programmer and compiler do not expect their

execution, they can leak a wider variety of secrets.

Figure 1(d) shows an example where an MRA can attack a tran-

sient instruction through branch misprediction. The transmitter

should never execute, but the attacker trains the branch predictor

so that it does. Figure 1(c) shows a related example. The transmitter

should not execute using the secret, but the attacker trains the

branch predictor so that it does.

The third characteristic in Table 1 is whether the Victim is in

a loop accessing the same secret in every iteration. If it is, MRAs

are more effective for two reasons. First, the attacker has more

opportunities to force the re-execution of the transmitter and leak

the secret. Second, since the loop is dynamically unrolled in the

ROB during execution, the ROB may contain multiple instances

of the transmitter, already leaking the secret multiple times. Only

when a squash occurs will any MRA defense engage. We call a

squash that squashes multiple transmitter instances leaking the

same secret in an unrolled loop a multi-instance squash.

Figures 1(e) and (f) are like (c) and (d), but with the transmitter

in a loop. In these cases, the attacker can create more leaks of

the transmitter by training the branch predictor so these branches

mispredict in every iteration. In the worst case, the branch in the

first iteration resolves after � loop iterations are loaded into the

ROB and have executed. By the time the multi-instance squash

occurs, � has been leaked as many as � times. Only then is the

MRA defense engaged.

Figure 1(g) is like (f) except that the transmitter leaks a different

secret every iteration. In this case, it is easier to minimize the

leakage.

3.2 Our Approach to Thwarting MRAs

To see how to thwartMRAs, consider Figure 2(a), where a Squashing

instruction � causes the squash of all the younger instructions in

the ROB (Victims �0 ... ��). The idea is to detect this event and

record all the Victim instructions. Then, as the Victim instructions

are re-inserted into the ROB, precede each of them with a fence.

We want to prevent the re-execution of each �� until �� cannot be

squashed anymore. In this way, the attacker cannot observe the

side effects of �� more than once. The point when �� cannot be

squashed anymore is (i) when �� is at the head of the ROB, or (ii)

when no older instruction than �� in the ROB or any other event

(e.g., a memory consistency violation) can squash�� . This point has

been called the Visibility Point (VP) of �� [58].

For highest performance, the type of fence used should be one

that only prevents the execution of the�� instruction, where�� can

be any type of transmitter instruction. Further, when �� reaches its

1063

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

Figure 2: Reorder Buffer (ROB) and Squashed Buffer (SB).

VP, the fence should be automatically disabled by the hardware, so

that �� can execute.

In this approach, there are two main decisions to make: (i) on

a squash, how to record the Victim instructions? and (ii) for how

long to keep this information? As a straw-man, consider a squash

triggered by an exception in inst_1 of Figure 1(a). Before the squash,

several dynamic instructions V younger than inst_1 may have al-

ready partially executed speculatively. As the program re-starts

after the squash, the processor will re-execute these same V instruc-

tions, in the exact same order. Hence, our defense can be as follows.

When the squash occurs, we record the V dynamic instructions in

a list, in program order; then, as each �� in V is about to re-execute,

we precede it with a fence. When �� reaches its VP, we remove ��
from the list. Once the list becomes empty, we can resume normal,

fence-free execution.

In reality, most squashes are more complicated, especially when

we have branches (Figure 1(b)) or execute transient instructions

(Figure 1(d)). In these cases, program re-start may not result in

the re-execution of all the recorded Victims, or perhaps not in

the same order as the first time. Moreover, when we have loops

such as in Figure 1(e), the list of Victims of a squash may include

multiple dynamic instances of the same static instruction—each

from a different loop iteration—possibly leaking the same secret.

Consequently, we will need more elaborate designs.

Finally, no amount of fencing can prevent the repeated re-

execution of the Squashing instruction when such instruction is

squashed during its execution. An example is the replay handle

in Skarlatos et al. [50], which is forced to suffer repeated page

faults. Hence, we suggest handling an attack on these Squashing in-

structions themselves differently. Specifically, the hardware should

not allow a dynamic instruction to trigger more than a very small

number of repeated pipeline flushes before raising an attack alarm.

4 THREAT MODEL

We consider supervisor- and user-level attackers. In both cases, we

assume the attacker can monitor a microarchitectural side channel

(e.g., those in Section 2.1). This is easily realized when the attacker

has supervisor-level privileges, as in the original MRA paper for

the SGX setting [50]. It is also possible, subject to OS scheduler

assumptions, when the attacker runs unprivileged code [25]. In

addition, we assume that the attacker can trigger squashes in the

victim program to perform MRAs. Which squashes are possible

depends on the attacker. In the supervisor-level setting, the attacker

can trigger squashes due to exceptions such as page faults, or due

to branch mispredictions by priming the branch predictor state. In

the user-level setting, the attacker has more limited capabilities. For

example, it may be able to trigger branch mispredictions by priming

the branch predictor state [35] but cannot cause exceptions.

5 PROPOSED DEFENSE SCHEMES

5.1 Outline of the Schemes

A highly secure defense against MRAs would keep a fine-grain

record of all the dynamic instructions that were squashed. When

one of these instructions would later attempt to re-execute, the

hardware would fence it and, when it reached the VP, remove

it from the record. In reality, such a scheme is not practical due

to the potentially large storage requirements and the difficulty

of identifying the same dynamic instruction. Hence, Jamais Vu

proposes three classes of schemes that discard this state early. The

schemes differ on when and how they discard the state.

A scheme called Clear-on-Retire discards any Victim informa-

tion as soon as the program makes forward progress—i.e., when

the Squashing instruction reaches its VP (and hence will retire). A

scheme called Epoch discards the state when the current “execu-

tion locality” or epoch terminates, and execution moves to another

one. Finally, a scheme called Counter keeps the state forever, but

it compresses it so that all dynamic instances of the same static

instruction keep their state merged. Each of these policies to discard

or compress state creates a different attack surface.

5.2 Clear-on-Retire Scheme

The rationale for the simple Clear-on-Retire scheme is that an MRA

leaks information by stalling a program’s forward progress and re-

peatedly re-executing the same set of instructions. Hence, when an

MRA defense manages to force forward progress, it is appropriate to

discard the record of Victim instructions. Therefore, Clear-on-Retire

clears the Victim state when the Squashing instruction reaches its

VP.

Clear-on-Retire stores information about the Victim instructions

in a buffer associated with the ROB called the Squashed Buffer (SB).

Figure 2(b) shows a conceptual view of the SB. It is composed of a

PC Buffer and an identifier register (ID). The PC Buffer contains the

set of program counters (PCs) of the Victim instructions. Since a

squash may discard multiple iterations of a loop in the ROB, the SB

may contain the same PC multiple times. The ID register contains

information that identifies the Squashing instruction—i.e., the one

that caused the squash. Such information includes the PC of the

instruction and its position in the ROB.

Multiple instructions in the ROB may cause squashes, in any

order. For example, in Figure 1(b), the branch in Line 3 may cause a

squash first, and then the branch in Line 1 may cause a squash. At

every squash, the Victims’ PCs are added to the PC Buffer. However,

ID is only updated if the Squashing instruction is older than the

one currently in ID. This is because the older instruction will retire

first and hence its retirement is needed to make forward progress.

1064

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 2: Proposed defense schemes against microarchitectural replay attacks.

Scheme Removal Policy Rationale Pros/Cons

Clear-on When the Squashing instruction The program makes forward progress when + Simple scheme

-Retire reaches its visibility point (VP) the Squashing instruction reaches its VP + Most inexpensive hardware

- Some unfavorable security scenarios

Epoch When an epoch completes An epoch captures an execution locality + Inexpensive hardware

+ High security if epoch chosen well

- Need compiler support

Counter No removal, but Keeping the difference between squashes + Conceptually simple

information is compacted and retirements low minimizes leakage - Intrusive hardware

beyond natural program leakage - May require OS changes

- Some pathological patterns

The Clear-on-Retire algorithm works as follows. On a squash, the

PCs of the Victims are added to the PC Buffer, and ID is updated if

necessary. When trying to insert an instruction � in the ROB, if � is

in the PC Buffer, a fence is placed before � . When the instruction in

ID reaches its VP, since the program is making forward progress,

the SB is cleared and all the fences introduced by Clear-on-Retire

are nullified.

To understand why ID needs to store both the Squashing in-

struction’s PC and its ROB index, note that there are two types of

Squashing instructions. One type, such as mispredicted branches,

remain in the ROB after they trigger a squash; the other type, such

as instructions suffering an exception or loads suffering a memory

consistency violation, are removed from the ROB after they trigger

a squash. For the first type, Clear-on-Retire does not use the PC field

in ID; it only uses the ROB index in ID to determine the relative

age of any two Squashing instructions. For the second type, since

the instruction is removed from the ROB, the ROB index in ID is

meaningless. Hence, Clear-on-Retire uses the PC in ID to identify

the Squashing instruction when it is re-inserted into the ROB. At

that point, Clear-on-Retire saves into ID the instruction’s new ROB

index.

The first row of Table 2 describes Clear-on-Retire. The scheme

is simple and has the most inexpensive hardware. The SB can be

implemented as a simple Bloom filter (Section 6.1).

One shortcoming of Clear-on-Retire is that it has some unfavor-

able security scenarios. Specifically, the attacker could choose to

make slow forward progress toward the transmitter � , forcing every

single instruction encountered to be a Squashing one.

In practice, this scenario may be hard to set up since, for maxi-

mum effectiveness, the squashes have to occur in strict order, from

older to younger predecessor of � . Indeed, if a Squashing instruction

�1 squashes � , and � is then re-inserted into the ROB with a fence,

a second Squashing instruction �2 older than �1 will not squash

� ’s execution again. The reason is that � is fenced and has not yet

executed.

5.3 Epoch Scheme

The rationale for the Epoch scheme is that an MRA attacks an “ex-

ecution locality” of a program, which has a certain combination

of Victim instructions. Once program execution moves to another

locality, the re-execution (and squash) of some of the original Vic-

tims is not seen as dangerous. Hence, it is appropriate to discard

the record of Victim instructions from a locality when moving

to another locality. We refer to an execution locality as an Epoch.

Possible epochs are a loop iteration, a whole loop, or a subroutine.

Like Clear-on-Retire, Epoch uses an SB to store information about

the Victim instructions. However, the design is a bit different. First,

Epoch requires the hardware to find start-of-epoch markers as it

inserts instructions into the ROB. We envision that such markers

are added by the compiler. Second, the SB needs one {ID, PC-Buffer}

pair for each in-progress epoch. The ID now stores a small-sized,

monotonically-increasing epoch identifier; the PC Buffer stores the

PCs of the Victims squashed in that particular epoch.

The Epoch algorithm works as follows. As instructions are in-

serted into the ROB, the hardware records every start-of-epoch

marker. On a squash, the Victim PCs are stored in different PC

Buffers depending on the epoch they belong to. The IDs of the PC

Buffers are set to the corresponding epoch IDs. Note that a given

PC may be in multiple PC Buffers and even multiple times in the

same PC Buffer. Then, when trying to insert an instruction � in the

ROB, if � is in the PC Buffer of the current epoch, � is fenced. Finally,

when the first instruction of an epoch reaches its VP, the hardware

clears the {ID, PC-Buffer} of any older epoch.

When a program re-starts after a squash, the first instruction

re-enters the ROB with the same epoch ID as that of the oldest

squashed instruction. For example, suppose that instruction I of

epoch i suffers a page fault while younger instructions from epochs

i+1 and i+2 are also in the ROB. The hardware flushes I and all

subsequent instructions. After the page fault is repaired, I re-enters

the pipeline as belonging to epoch i, not epoch i+3. Effectively,

Epoch resets the epoch ID to the point of the squash.

Epoch protects the scenario where, after the squash, the re-

execution exercises the same set of epochs that were executed

speculatively before the squash and left Victim instructions in the

PC Buffers—although, perhaps, the re-execution executes different

instructions than before in such epochs. However, Epoch does not

target the case when, after the squash, the re-execution exercises a

different set of epochs: e.g., when, because of a branch mispredic-

tion, a subroutine is now called that was not called before, or a loop

that was initially executed is now not executed anymore. In these

cases, we consider that the re-execution has moved to different

localities and, therefore, Epoch does not need to match the new

instructions with the older Victims.

1065

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

The second row of Table 2 describes Epoch. The scheme is also

simple and has inexpensive hardware. It can also implement the

PC Buffers as Bloom filters. Epoch has high security if epochs are

chosen appropriately, as the Victim information remains for the

whole duration of the epoch. A drawback of Epoch is that it needs

compiler support.

An epoch can be long, in which case its PC Buffer may contain

too many PCs to operate efficiently. Hence, our preferred imple-

mentation of this scheme is a variation of Epoch called Epoch-Rem

that admits PC removal. Specifically, when a Victim from an epoch

reaches its VP, the hardware removes its PC from the correspond-

ing PC Buffer. This support reduces the pressure on the PC Buffer.

This functionality is supported by implementing the PC Buffers as

counting Bloom filters (Section 6.2).

5.4 Counter Scheme

The Counter scheme never discards information about Victim

squashes. However, to be implementable, the scheme merges the

squash information from all the dynamic instances of the same static

instruction into a single variable. Specifically, Counter records, for

any given static instruction, the difference between the number of

times it has been squashed and the number of times it has retired.

Counter’s goal is to keep such difference small. The rationale is that,

if both counts are similar, an MRA is unlikely to exfiltrate much

more information than what the program naturally leaks.

While Counter can be implemented like the two previous

schemes, a more intuitive implementation associates Victim in-

formation with each static instruction. A simple design adds a

Squashed bit to each static instruction � . When � gets squashed, its

Squashed bit is set. From then on, an attempt to insert � in the ROB

causes a fence to be placed before � . When � reaches its VP, the bit

is reset. After that, a future invocation of � is allowed to execute

with no fence.

In reality, multiple dynamic instances of the same static instruc-

tion may be in the ROB at the same time and get squashed together.

Hence, we use a Squashed Counter per static instruction rather than

a bit. The algorithm works as follows. Every time that dynamic

instances of the instruction get squashed, the counter increases

by the number of squashed instances; every time that an instance

reaches its VP, the counter is decremented by one. The counter

does not go below zero. Finally, when an instruction is inserted in

the ROB, if its counter is not zero, the hardware fences it. This is

the Counter scheme that we propose.

To reduce the number of stalls, a variation of this scheme allows

a Victim to execute without a fence as long as its counter is lower

than a threshold.

The third row of Table 2 describes Counter. The scheme is concep-

tually simple. However, it requires somewhat intrusive hardware.

One possible design requires counters that are stored in memory

and get cached on demand into a special cache next to the L1 (Sec-

tion 6.3). This counter cache or the memory needs to be updated

every time a counter changes. In addition, the OS needs changes to

allocate and manage pages of counters for the instructions.

Counter has some pathological patterns. Specifically, an attacker

may be able to repeatedly squash an instruction by interleaving the

squashes with retirements of the same static instruction. In this case,

one access leaks a secret before being squashed, while the other

access is benign, retires, and decreases the counter. This pattern

is shown in Figure 1(e). In every iteration, the branch predictor

incorrectly predicts the condition to be true, � is set to secret, and

the transmitter leaks � . The execution is immediately squashed,

the else code executes, and the transmitter retires. This process is

repeated in every iteration, causing the counter to toggle between

one and zero.

5.5 Analysis of the Security of the Schemes

To assess the relative security of the schemes, we compare their

worst-case leakage for each of the code snippets in Figure 1. While

the snippets in Figure 1 only show some of the possible patterns,

they cover a broad spectrum of cases. Indeed, they show examples

of transmitters in straight-line code and in loops; replays due to

exceptions (Figure 1(a)) and branch mispredictions; transmitters

executed transiently (e.g., Figure 1(d)) and non-transiently; and

transmitters with iteration-independent and iteration-dependent

secrets.

A summary of the analysis is shown in Table 3. We measure

leakage as the number of executions of the transmitter for a given

secret. We report Transient Leakage (TL) when the transmitter is

a transient instruction and Non-Transient Leakage (NTL) when it

is not. For the Epoch scheme, we show the leakage for one design

that uses iterations as epochs (Iter) and for one that uses loops

as epochs (Loop). For each of these two designs, we consider an

implementation without removal of Victim PCs from the PC Buffers

when they reach their VP (NR) and with removal of them (R).

Table 3: Worst-case leakage count in the proposed defense

schemes for some of the examples in Figure 1. For a loop,

� is the number of iterations and, as the loop dynamically

unrolls in the ROB, � is the number of iterations that fit in

the ROB.

Case Non- Transient Leakage (TL)

Transient Clear-on Epoch Cntr

Leakage -Retire Iter Loop

(NTL) NR R NR R

(a) 1 ROB-1 1 1

(b) 1 BR���-1 1 1

(c),(d) 0 1 1 1 1 1 1

(e) 0 K*N N N K N N

(f) 0 K*N N N K K K

(g) 0 K 1 1 1 1 1

In Figure 1(a), since the transmitter should commit, the NTL is

one. The TL is found as follows. In Clear-on-Retire, the attacker

could make each instruction older than the transmitter a Squashing

one. In the very worst case, the squashes occur in program order,

and the timing is such that the transmitter is squashed as many

times as the ROB size minus one. Hence TL is ROB size minus 1.

While this is a large number, it is smaller than the leakage in the

original MicroScope attack [50], where TL is infinite because one

instruction can cause any number of squashes. In all Epoch designs,

the transmitter is squashed only once. Hence, TL is 1. Counter

1066

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

sets the transmitter’s counter to 1 on the first squash; no other

speculative re-execution is allowed. Hence, TL is 1.

Figure 1(b) is conceptually like (a). The NTL in all schemes is 1.

The TL of Counter and Epoch is 1. In Clear-on-Retire, in the worst-

case where all the branches are mispredicted and resolve in program

order, the TL is equal to the number of branches that fit in the ROB

minus one slot (for the transmitter).

Figures 1(c) and (d) are very simple examples. NTL is 0 (since in

Figure 1(c) � is never set to the secret in a non-speculative execution)

and TL is 1 for all schemes.

In Figure 1(e), NTL is zero. However, the attacker may cause

the branch to be mispredicted in every iteration. To assess the

worst-case TL in Clear-on-Retire, assume that, as the � -iteration

loop dynamically unrolls in the ROB, � iterations fit in the ROB.

In this case, the worst-case is that each iteration (beyond the first

� − 1 ones) is squashed � times. Hence, TL in Clear-on-Retire is

� ∗� . In Epoch with iteration, since each epoch allows one squash,

the TL is � (with and without PC removal). In Epoch with loop

without removal, in the worst case, the initial� iterations are in the

ROB when the squash occurs, and we have a multi-instance squash

(Section 3.1). Hence, the TL is � . In Epoch with loop with removal,

since every retirement of the transmitter removes the transmitter

PC from the SB, TL is � . Finally, in Counter, since every iteration

triggers a squash and then a retirement, TL is � .

Figure 1(f) is like Figure 1(e), except that the transmit instruction

never retires for any value of x. As a consequence, Epoch with loop

with removal does not remove it from the SB, and Counter does not

decrease the counter. Hence, their TL is � .

Finally, Figure 1(g) is like 1(f) except that each iteration accesses

a different secret. The NTL is zero. The TL for Clear-on-Retire is �

because of the dynamic unrolling of iterations in the ROB. For the

other schemes, TL is 1 in the worst case.

Overall, for the examples shown in Table 3, Epoch at the right

granularity (i.e., loop level) without removal has the lowest leakage.

With removal, the scheme is similar to Counter, and better than

Epoch with iteration. Clear-on-Retire has the highest worse-case

leakage. Further analysis with more code patterns is part of our

future work, and will provide more insights.

Appendix B analyzes the implications of the leakage bounds in

Table 3 on the security of a system.

6 MICROARCHITECTURAL DESIGN

6.1 Implementing Clear-on-Retire

The PC Buffer in the SB needs to support three operations. First,

on a squash, the PCs of all the Victims are inserted in the PC Buffer.

Second, before an instruction is inserted in the ROB, the PC Buffer

is queried to see if it contains the instruction’s PC. Third, when the

instruction in the ID reaches its VP, the PC Buffer is cleared.

These operations are easily supported with a hardware Bloom

filter [8]. Figure 3 shows the filter’s structure. It is an array of �

entries, each with a single bit. To insert an item in the filter (BF),

the instruction’s PC is hashed with � hash functions (�) and � bits

get set:
� [1],
� [2], ...
� [�]. The filter can be implemented

as an �-port direct-mapped cache of� 1-bit entries.

A Bloom filter can have false positives but no false negatives.

A false positive occurs when a PC is not in the PC Buffer but it

Figure 3: SB with a PC Buffer organized as a Bloom filter.

is deemed to be there due to a conflict. This situation is safe, as it

means that Clear-on-Retire will end up putting a fence before an

instruction that does not need it.

In practice, if we size the filter appropriately, we do not see many

false positives when running benign programs. Specifically, as we

will see in Section 9.3, for a 192-entry ROB, a filter with 1232 bits

and 7 hash functions has less than 0.5% false positives.

6.2 Implementing Epoch

The SB for Epoch is like the one for Clear-on-Retire with two dif-

ferences. First, there are multiple {ID, PC-Buffer} pairs—one for

each in-progress epoch. Second, in Epoch-Rem, which supports the

removal of individual PCs from a PC Buffer, each PC Buffer is a

counting Bloom filter [18].

Figure 4 shows the SB with multiple counting Bloom filters. The

latter are like plain filters except that each entry has k bits. To

insert an item in a filter, the � entries selected by the hashes are

incremented by one—i.e.,
� [1]++,
� [2]++, ...
� [�]++. To
remove the item, the same entries are decremented by one. An

�-port direct-mapped cache of� k-bit entries is used.

Figure 4: SB with multiple PC Buffers organized as counting

Bloom filters.

A counting Bloom filter can suffer false positives which, in our

case, are harmless. In addition, it can also suffer false negatives. A

false negative occurs when a Victim should be in the PC Buffer but

it is deemed not to. In Jamais Vu, they are caused in two ways. The

first one is when a non-Victim instruction �� to be inserted in the

ROB is incorrectly believed to be in the filter because it conflicts

with existing entries in the filter. Later, when �� reaches its VP, it

causes the removal of state from Victim instructions from the filter.

After that, when Victims are checked for membership, they are not

found, triggering a false negative.

The second case is when the filter does not have enough bits per

entry and, as a new Victim is inserted, an entry saturates. In this

case, information is lost. Later, Victim state that should be in the

filter will not be found in the filter.

1067

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

False negatives reduce security because no fence is inserted

where there should be one. However, by appropriately sizing the

Bloom filter relative to the ROB size, we can reduce the upper bound

of false negatives [26]. In practice, as we will see in Section 9.3,

because each counting Bloom filter only contains Victims from one

epoch, we find that only 0.02% and 0.006% of the accesses are false

negatives in Epoch with loops and iterations, respectively.

Note that an attacker cannot explicitly cause hashed addresses

to bunch-up into a few Bloom-filter entries and saturate them.

The reason is that the attacker does not control how the Victim

instructions following a squash scatter into the Bloom filter.

6.2.1 Handling Epoch Overflow. The SB has a limited number of

{ID, PC-Buffer} pairs. Therefore, it is possible that, on a squash, the

Victim instructions belong to more epochs than PC Buffers exist in

the SB. For this reason, Epoch augments the SB with one extra ID

not associated with any PC Buffer called Over�owID. To understand

how it works, recall that epoch IDs are monotonically increasing.

Hence, we may find that Victims from a set of high-numbered

epochs have no PC Buffer to go. In this case, we store the ID of the

highest-numbered epoch of any Victim in Over�owID. From now

on, when a new instruction is inserted in the ROB, if it belongs to

an epoch whose ID: (i) owns no PC Buffer and (ii) is no higher than

the one in Over�owID, we place a fence before the instruction. The

reason is that, since we have lost information about Victims in that

epoch, we do not know whether the instruction is a Victim. When

the epoch whose ID is in Over�owID is fully retired, Over�owID is

cleared.

As an example, consider Figure 5(a), which shows a ROB full

of instructions. The figure groups the instructions according to

their epoch and labels the group with the epoch ID. Assume that

all of these instructions are squashed and that the SB only has four

{ID, PC-Buffer} pairs. Figure 5(b) shows the resulting assignment

of epochs to {ID, PC-Buffer} pairs. Epochs 14 and 15 overflow and,

therefore, Over�owID is set to 15. Any future insertion in the ROB

of an instruction from epochs 14 and 15 will be preceded by a fence.

Eventually, some {ID, PC-Buffer} pairs will free-up and may be used

by newer epochs such as Epoch 16. However, all instructions from

Epochs 14 and 15 will always be fenced.

Figure 5: Handling epoch over�ow.

6.3 Implementing Counter

To implement Counter, Jamais Vu stores the counters for all the

instructions in data pages, and the core has a small Counter Cache

(CC) that keeps the recently-used counters close to the pipeline for

easy access. Since the most frequently-executed instructions are in

loops, a small CC typically captures the majority of the counters

needed.

We propose a simple design where, for each page of code, there

is an associated data page at a fixed Virtual Address (VA) Offset that

holds the counters of the instructions in the page of code. Further,

the VA offset between each instruction and its counter is fixed, to

ease access. In effect, this design increases the memory consumed

by a program by the size of its instruction page working set.

Figure 6(a) shows a page of code and its page of counters at a

fixed VA offset. When the former is brought into physical memory,

the latter is also brought in. The figure shows a memory line with

several instructions and the associated line with their counters. We

envision each counter to be 4 bits.

Figure 6: Allocating and caching instruction counters.

Figure 6(b) shows the action taken when an instruction is about

to be inserted in the ROB. The VA of the instruction is sent to the

CC, which is a small, set-associative cache that contains the most

recently-used lines of counters. Due to good instruction locality,

the CC hits most of the time. On a hit, the corresponding counter

is sent to the pipeline to be examined.

If, instead, the CC misses, a CounterPending signal is sent to

the pipeline. To avoid adding new side channels, no other action

is taken until the corresponding instruction reaches its Visibility

Point (VP). At that point, theOffsetwill be added to the instruction’s

VA to obtain the VA of the counter, and this address will be sent to

the TLB to obtain the Physical Address (PA) of the counter. After

that, a request will be sent to the cache hierarchy to obtain the line

of counters, store it in the CC, and pass the counter to the pipeline.

The operations in the pipeline are as follows. If the counter is not

zero or a CounterPending signal is received, two actions are taken.

First, a fence is inserted in the ROB before the instruction. Second,

when the instruction reaches its VP, the counter is decremented and

stored back in the CC or, if a CounterPending signal was received,

the request mentioned above is sent to the cache hierarchy to

obtain the counter. When the counter is returned, if it is not zero,

the counter is decremented. The counter is stored in the CC.

In our design, we want the CC to add no side channels. Hence,

on a CC hit, the CC’s LRU bits are not updated until the instruction

reaches its VP. Further, on a CC miss, we delay the request to the

cache hierarchy for the counter until the instruction reaches its VP.

1068

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

6.4 Handling Context Switches

To operate correctly, Jamais Vu performs the following actions at

context switches. In Clear-on-Retire and Epoch, the SB state is saved

to and restored from memory as part of the context. This enables

the defense to remember the state when execution resumes. In

Counter, the CC is flushed to memory to leave no traces behind that

could potentially lead to a side-channel exploitable by the newly

scheduled process. The new process loads the CC on demand. These

operations can be done safely by the trusted environment.

7 COMPILER PASS

Epoch includes a program analysis pass that places "start-of-epoch"

markers in the program. The pass accepts as input a program in

source code or binary. Source code is preferred, since it contains

more information and allows a better analysis.

We consider two designs: one that uses loops as epochs and one

that uses loop iterations as epochs. In the former, an epoch includes

the instructions between the beginning and the end of a loop, or

between the end of a loop and the beginning of the next loop; in the

latter, an epoch includes the instructions between the beginning

and the end of an iteration, or between the end of the last iteration

in a loop and the beginning of the first iteration in the next loop.

In both Epoch designs, procedure calls and returns are also epoch

boundaries.

The analysis is intra-procedural and uses conventional control

flow compiler techniques [3]. It searches for back edges in the

control flow of each function, and from there identifies the natural

loops. Once back edges and loops are identified, the Epoch compiler

inserts the epoch boundary markers.

To mark an x86 program, our analysis pass places a previously-

ignored instruction prefix [29] in front of every first instruction

of an epoch. The processor ignores this prefix, and our simulator

recognizes that a new epoch starts. This approach changes the

executable, but because current processors ignore this prefix, the

new executable runs on any x86 machine. The size of the executable

increases by only 1 byte for every static epoch. For epoch boundaries

formed by procedure calls and returns, the compiler does not need

to mark anything. The simulator recognizes the x86 procedure call

and return instructions and starts a new epoch.

8 EXPERIMENTAL SETUP

Architectures Modeled. We model the architecture shown in Ta-

ble 4 using cycle-level simulations with gem5 [7]. The baseline

architecture is called Unsafe, because it has no protection against

MRAs. The defense schemes are: (i) Clear-on-Retire (CoR), (ii) Epoch

with iteration (Epoch-Iter), (iii) Epoch-Rem with iteration (Epoch-

Iter-Rem), (iv) Epoch with loop (Epoch-Loop), (v) Epoch-Rem with

loop (Epoch-Loop-Rem), and (vi) Counter (Counter).

From Table 4, we can compute the sizes of the Jamais Vu hard-

ware structures. Clear-on-Retire uses 1 non-counting Bloom filter.

The size is 1232 bits. Epoch uses 12 Bloom filters. For Epoch-Rem,

since the counting Bloom filters use 4 bits per entry, the total size is

12 times 4,928 bits, or slightly above 7KB. A Bloom filter has 14 read

and 7 write ports. The Counter Cache (CC) in Counter contains

128 entries, each with the counters of one I-cache line. Since the

shortest x86 instruction is 1 byte and a counter is 4 bits, each line

Table 4: Parameters of the simulated architecture.

Parameter Value

Architecture 2.0 GHz out-of-order x86 core

Core 8-issue, no SMT, 62 load queue entries, 32 store

queue entries, 192 ROB entries, L-TAGE branch

predictor, 4096 BTB entries, 16 RAS entries

L1-I Cache 32KB, 64 B line, 4-way, 2 cycle Round Trip (RT)

latency, 1 port, 1 hardware prefetcher

L1-D Cache 64 KB, 64 B line, 8-way, 2 cycle RT latency, 3 Rd/Wr

ports, 1 hardware prefetcher

L2 Cache 2MB, 64 B line, 16-way, 8 cycles RT latency

DRAM 50 ns RT latency after L2

Counter Cache 32 sets, 4-way, 2 cycle RT latency, 4b/counter

Bloom Filter 1232 entries, 7 hash functions. Non-counting:

1b/entry. Counting: 4b/entry

{ID, PC-Buffer} 12 pairs in Epoch; 1 pair in Clear-on-Retire

in the CC is shifted 4 bits every byte, compacting the line into 32B.

Hence, the CC size is 4KB.

Application and Analysis Pass. We run SPEC17 [9] with the

reference input size. Because of simulation issues with gem5, we ex-

clude 2 applications out of 23 from SPEC17. For each application, we

use SimPoint [27] methodology to generate up to 10 representative

intervals that accurately characterize the end-to-end performance.

Each interval consists of 50 million instructions. We run gem5 on

each interval with syscall emulation with 1M warm-up instructions.

Our program analysis pass is implemented on top of Radare2 [47],

a state-of-the-art open-source binary analysis tool. We extend

Radare2 to perform epoch analysis on x86 binaries.

9 EVALUATION

9.1 Thwarting Proof-of-Concept (PoC) MRA

To demonstrate Jamais Vu’s ability to thwart MRAs, we implement

a PoC MRA on gem5 similar to the port contention attack in [50].

After testing a secret, the victim thread performs a division oper-

ation. The attacker picks 10 Squashing instructions that precede

the test and the division. The code is similar to Figure 1(a). In Un-

safe, the attacker causes 5 squashes on each of the 10 Squashing

instructions, for a total of 50 replays of the division operation. With

Clear-on-Retire, the number of replays decreases to 10, since each

Squashing instruction can only cause a single replay. With Epoch,

there is a single replay because all the code belongs to a single

epoch. With Counter, there is a single replay because the division

only commits once.

9.2 Execution Time

Jamais Vu proposes several schemes that offer different perfor-

mance, security, and implementation complexity trade-offs. Figure 7

shows the normalized execution time of SPEC17 applications on

all schemes but Epoch without removals, which we consider later.

Time is normalized to Unsafe.

Among all the schemes, CoR has the lowest execution time

overhead. It incurs only a geometric mean overhead of 2.9% over

Unsafe. It is also the simplest but least secure design (Table 3).

Epoch-Iter-Rem has the next lowest average execution overhead,

namely 11.0%. This design is also very simple and is more secure,

1069

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

Figure 7: Execution time for all the schemes except Epoch without removals. Time is normalized to Unsafe.

especially as we will see that false negatives are very rare. The

next design, Epoch-Loop-Rem, has higher average execution time

overhead, namely 13.8%. However, it has simple hardware and is

one of the two most secure designs (Table 3)—again, given that, as

we will see, false negatives are very rare. Finally, Counter has the

highest average execution overhead, namely 23.1%. It is one of the

two most secure schemes, but the implementation proposed is not

as simple as the other schemes. From all these schemes, Epoch-

Loop-Rem and perhaps CoR appear to be the most appealing.

The schemes not shown in the figure, namely Epoch-Iter and

Epoch-Loop are not competitive. They have an average execution

overhead of 22.6% and 63.8%, respectively. These are substantial

increases over the schemes with removals, with modest gains in

simplicity and security.

9.3 Sensitivity Study

Each Jamais Vu scheme has several architectural parameters that

set its hardware requirements and efficiency. Recall that CoR uses

a Bloom filter, while Epoch-Iter-Rem and Epoch-Loop-Rem use

counting Bloom filters. To better understand the different Bloom

filters, we first perform a sensitivity study of their parameters. Then,

we evaluate several Counter Cache organizations for Counter.

Number of Bloom Filter Entries. Figure 8 shows the geometric

mean of the normalized execution time and the false positive rates

(FP) on SPEC17, when varying the size of the Bloom filter. We

consider several sizes, which we measure in number of entries.

Recall that each entry is 1 bit for CoR and 4 bits for the other

schemes. We pick each of these number of entries by first selecting

a projected element count (i.e., the number of items that we expect

to be inserted in the Bloom filter, as shown in parenthesis in the

figure) and running an optimization pass [44] for a target false

positive probability of 0.01. From the figure, we see that a Bloom

filter of 1232 entries strikes a good balance between execution and

area overhead, with a false positive rate of less than 0.5% for all the

schemes.

Number of {ID, PC-Buffer} Pairs. Another design decision for

Epoch-Iter-Rem and Epoch-Loop-Rem is howmany {ID, PC-Buffer}

pairs to have. If they are too few, overflow will be common. Figure 9

shows the average normalized execution time and the overflow rates

on SPEC17, when varying the number of {ID, PC-Buffer} pairs. The

Figure 8: Average normalized execution time and false posi-

tive rate (FP) when varying the number of entries per Bloom

filter. The numbers in parenthesis are the maximum num-

ber of items to be inserted in the Bloom filter to attain a tar-

get false positive probability of 0.01.

overflow rate is the fraction of insertions into PC Buffers that over-

flow. From the figure, we see that, as the number of {ID, PC-Buffer}

pairs decreases, the execution time and overflow rates increase.

Supporting 12 {ID, PC-Buffer} pairs is a good design point.

Figure 9: Average normalized execution time and over�ow

rate when varying the number of {ID, PC-Buffer} pairs.

Number of Bits Per Counting Bloom Filter Entry. The count-

ing Bloom filters in Epoch-Iter-Rem and Epoch-Loop-Rem use

a few bits per entry to keep the count. Figure 10 shows the aver-

age normalized execution time and the false negative rates (FN)

on SPEC17, when varying the number of bits per entry. We see

1070

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

from the figure that the number of bits per entry has little impact

on the performance. However, as the number of bits per entry de-

creases beyond four, the false negative rate increases rapidly. For

four bits per entry, the false negative rate is an acceptable 0.02% for

Epoch-Loop-Rem and 0.006% for Epoch-Iter-Rem.

Figure 10: Average normalized execution time and false neg-

ative rate (FN)when varying the number of bits per counting

Bloom filter entry.

False negatives can be caused either by conflicts in the filter or

by not having enough bits in an entry. In the latter case, when the

counter in the entry saturates, it cannot record further squashes

and information is lost. To estimate the relative impact of these

two sources of false negatives, we took our default Bloom filter

of 1232 entries and four bits per entry, and artificially eliminated

conflicts. We did this by recording the inserted items in an ideal

hash table that has no conflicts. We found that the resulting false

negative rates are 0.004% and 0.002% for Epoch-Loop-Rem and

Epoch-Iter-Rem, respectively. These numbers are comparable to

the false negative rates obtained by taking the default Bloom filter

and simply adding one extra bit per entry.

Counter Cache (CC) Geometry. Figure 11 shows the CC hit rate

as we vary the ways and sets of the CC. We see that the CC hit rate

increases with the number of entries, but that changing the asso-

ciativity of the CC from 4 to full does not help. Overall, our default

configuration of 32 sets and 4 ways performs well. It attains an

average hit rate of 93.7%, while a larger cache or a fully-associative

one improves the hit rate only a little. A smaller cache hurts the hit

rate substantially.

Figure 11: CC hit rate when varying the cache geometry.

10 RELATED WORK

There are some works related to mitigating MRAs.

Preventing Pipeline Squashes. The literature includes several

solutions that can mitigate specific instances of MRAs. For example,

page fault protection schemes [11, 41, 42, 49] can be used to mitigate

MRAs that rely on page faults to cause pipeline squashes. The goal

of these countermeasures is to block controlled-channel attacks [55,

57] by terminating victim execution when an OS-induced page

fault is detected. The most recent of these defenses, Autarky [42],

achieves this through a hardware/software co-design that delegates

paging decisions to the enclave. However, attacks that rely on events

other than page faults to trigger pipeline squashes (Section 3.1)

would still overcome these point-mitigation strategies. In contrast,

Jamais Vu is the first comprehensive defense that addresses the root

cause of MRAs, namely that instructions can be forced to execute

more than once.

Preventing Side Channel Leakage. Another strategy to miti-

gate MRAs is to prevent speculative instructions from leaking data

through side channels. For example, several works have proposed

to mitigate side channels by isolating or partitioning microarchi-

tectural resources [10, 12, 13, 23, 34, 37, 41, 52, 63], thus preventing

the attacker from accessing them during the victim process’ execu-

tion. These defenses prevent adversaries from leaking data through

specific side channels, which ultimately makes MRAs’s ability to

denoise these channels less useful. In practice, however, no holistic

solution exists that can block all side channels. Further, new ad-

versarial applications of MRAs may be discovered that go beyond

denoising side-channel attacks.

11 CONCLUSION

This paper presented Jamais Vu, the first technique to thwart MRAs.

Jamais Vu detects when an instruction is squashed and, as it is re-

inserted into the pipeline, places a fence before it. The three main

Jamais Vu designs are Clear-on-Retire, Epoch, and Counter, which

offer different trade-offs between security, execution overhead, and

implementation complexity. One design, called Epoch-Loop-Rem,

effectively mitigates MRAs, has an average execution time overhead

of 13.8% in benign executions, and only needs counting Bloom fil-

ters. An even simpler design, called Clear-on-Retire, has an average

execution time overhead of only 2.9%, although it is less secure.

ACKNOWLEDGMENTS

This work was partially funded by NSF grants CNS 1763658 and

1942888, Semiconductor Research Corporation (SRC) contract no.

2020-HW-2995, and a Google Faculty Research Award.

A A MEMORY CONSISTENCY MODEL
VIOLATION MRA

A.1 Description of the Attack

In Section 3.1, we have argued that MRAs can rely on various

sources to trigger pipeline squashes repeatedly. The paper that

introduced MRAs [50] used OS-induced page faults to cause replays.

In this appendix, we show for the first time thatmemory consistency

model violations can also create MRAs. In these MRAs, a load issued

speculatively to a location � is squashed because either the cache

receives an invalidation for the line where � resides, or the line

where � resides is evicted from the cache [15, 48]. A user-level

attacker can force either event.

1071

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

Our proof-of-concept (PoC) experiment consists of a victim and

an attacker running on two sibling CPU threads and sharing a

cache line �. In reality, the PoC variant using cache evictions could

be carried out without victim and attacker sharing memory and,

instead, using other eviction techniques [54].

The PoC is shown in Figure 12. The victim first brings shared

cache line � into the L1 cache and evicts private cache line
 from

the cache. The victim then reads line
 and misses in the entire

cache hierarchy. While
 is being loaded from memory, the victim

speculatively loads shared cache line �, followed by other spec-

ulative instructions. The attacker’s goal is to evict � or to write

to � after it has been speculatively loaded by the victim into the

cache but before load
 completes. If this is accomplished, the

load(A) instruction will be squashed, together with the subsequent

instructions due to a violation of the memory model.

1 for i in 1..N

2 LFENCE

3 LOAD(A) // Bring A to the cache

4 CLFLUSH(B) // Evict B from the cache

5 LFENCE

6 LOAD(B) // LOAD(B) misses in the cache

7 LOAD(A) // LOAD(A) hits in the cache and then

8 // is evicted/invalidated by attacker

9 ADD ... // 40 unrelated add instructions

(a) Victim.

1 while(1)

2 CLFLUSH(A) or STORE(A) //Evict/Invalidate A

3 .REPT 100 // Do nothing for a small interval

4 NOP // by executing 100 nops

5 .ENDR

(b) Attacker.

Figure 12: Pseudocode of our proof-of-concept victim and

attacker causing pipeline squashes due to memory consis-

tency model violations.

A.2 Experimental Evaluation

We run our experiment on a 4.00 GHz quad-core Intel i7-6700K CPU.

We configure the victim to run in a loop and set up the attacker to

evict or invalidate the shared cache line � periodically. If, during a

victim loop iteration, the attacker’s eviction or invalidation occurs

after the victim has speculatively loaded � but before instruction

load(
) has retired, the victim will incur a pipeline squash.

To detect if the victim incurs any pipeline squashes, we read

the number of machine clears (Intel’s terminology for pipeline

squashes), micro-ops issued, and micro-ops retired from the hard-

ware performance counters [30] (using Intel VTune [31] to monitor

only the victim’s function of interest).

We compare these numbers under three scenarios: (1) there is

no attacker; (2) the attacker evicts line �; (3) the attacker writes

to line �. Table 5 reports the results of our experiment, with a

victim configured with 10 million loop iterations. When there is no

attacker, we measure zero pipeline squashes in the victim and all

the issued micro-ops retire successfully. When the attacker evicts

line �, more than 3 million pipeline squashes occur in the victim,

and 30% of the issued micro-ops never retire. Finally, when the

attacker writes to �, more than 5 million pipeline squashes occur

in the victim and 53% of the issued micro-ops never retire.

These results confirm that memory consistency violations can

be used as a source of pipeline squashes and replays.

Table 5: Results of experiment. The numbers are collected

over 10 million victim loop iterations.

Number of

squashes

Percentage of micro-ops

issued that did not retire

No attacker 0 0%

Attacker

evicting A
3,221,778 30%

Attacker

writing to A
5,677,938 53%

B SECURITY ANALYSIS

This appendix analyzes the implications of the leakage bounds in

Table 3 on the security of a system. We consider the MRA proto-

typed by MicroScope [50], where a victim program performs two

multiplications or two divisions based on a test on a secret value.

The attacker forces the victim to continuously replay the operations,

while a monitor thread keeps performing division operations, and

recording what fraction of the divisions take longer than a certain

threshold latency. The authors found that, if the victim is perform-

ing divisions, the monitor sees 64 divisions with over-the-threshold

latency in 10000 samples; if the victim is performing multiplica-

tions, the monitor sees 4 divisions with over-the-threshold latency

in 10000 samples.

Based on this prototype, we model an MRA environment as fol-

lows. The attacker observes
 operations with over-the-threshold

latency in � samples.
 follows a binomial distribution. When

the secret is 0, the probability of observing an over-the-threshold

operation is �0, thus
 ∼
��(�, �0). When the secret is 1, the

probability is �1, thus
 ∼
��(�, �1). Based on the MicroScope

prototype, we use �0 = 4/10000 and �1 = 64/10000.
During an attack, the attacker can have two hypotheses:

(1) 	0: the secret is 0, i.e.,
 ∼
��(�, �0).
(2) 	1: the secret is 1, i.e.,
 ∼
��(�, �1).

To test which one of 	0 and 	1 to accept, the attacker runs the

Uniformly Most Powerful (UMP) test [36] with a single cut-off� . If

the attacker measures
/� < � , she accepts 	0 and predicts that

the secret is 0; if the attacker measures
/� > � , she accepts 	1

and predicts that the secret is 1. There are four possible outcomes:

• True secret � is 0:
(1) The attacker correctly predicts 0 with a probability

� (������� |� = 0).
(2) The attacker incorrectly predicts 1 with a probability

� (��������� |� = 0).
• True secret � is 1:

1072

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 6: The probability of each test outcome.

Truth

Prediction
������ = 0 ������ = 1 ���

������ = 0 � (������� |� = 0) =
∑

�/�<�

(

�

�

)

��0 (1 − �0)�−� � (��������� |� = 0) =
∑

�/�>�

(

�

�

)

��0 (1 − �0)�−� 100%

������ = 1 � (��������� |� = 1) =
∑

�/�<�

(

�

�

)

��1 (1 − �1)�−� � (������� |� = 1) =
∑

�/�>�

(

�

�

)

��1 (1 − �1)�−� 100%

(3) The attacker correctly predicts 1 with a probability

� (������� |� = 1).
(4) The attacker incorrectly predicts 0 with a probability

� (��������� |� = 1).
Among the four possible outcomes, the first and third cases result

in a correct prediction, while the second and fourth cases result

in an incorrect prediction. Table 6 shows the probability of each

outcome.

To determine an optimal cut-off � , we calculate the likelihood

ratio and require it to be 1:

Likelihood ratio =

�(0)
�(1)

=

(

�

�

)

��0 (1 − �0)�−�
(

�

�

)

��1 (1 − �1)�−�
= 1

After canceling the common parts of the numerator and denomina-

tor:
[

�0 (1 − �1)
�1 (1 − �0)

]� [

(1 − �0)
(1 − �1)

]�

= 1

then applying �� to both sides:

� ��

[

�0 (1 − �1)
�1 (1 − �0)

]

+ � ��

[

(1 − �0)
(1 − �1)

]

= 0

finally:

� = −
��

[

(1−	0)
(1−	1)

]

��

[

	0 (1−	1)
	1 (1−	0)

] �

Using the values of �0 = 4/10000 and �1 = 64/10000 from the

MicroScope experiment, we obtain � = 21.67� /10000. This is an
optimal choice for the cut-off.

If the attacker wants to exfiltrate the secret bit with more than

80% success rate, each of the probabilities of correct outcomes,

namely � (������� |� = 0) and � (������� |� = 1), need to be greater

than 80%. By solving the equations of � (������� |� = 0) > 0.8 and

� (������� |� = 1) > 0.8 in Table 6 for � = 21.67� /10000, we find
that � needs to be � >= 251. This means that the attacker needs

at least 251 replays to extract a single bit with 80% success rate. If

the attacker wants to exfiltrate an entire byte with 80% success

rate, then she needs 8
√
80% = 97.2% success rate on extracting every

single bit. In our case, this means that she requires at least 1107

replays for each bit extraction and 8856 replays in total. The longer

the secret is, the more the replays required are.

These replay counts are higher than the very worst leakage

counts of the Jamais Vu schemes in Table 3. It is true that, in the

cases of loops (Rows (e) and (f) in the table), the number of iterations

� of the loop may be large. However, these leakage counts require

that all the loop iterations read from the same location, which is

very rare given loop-invariant code-motion compiler optimizations.

Furthermore, the values of aforementioned probabilities �0 and

�1 from MicroScope [50] were obtained by re-executing the same

set of instructions with the same replay handle. Jamais Vu, instead,

forces the attacker to continuously change replay handle. Hence,

the attack’s success rate will be even smaller.

Overall, from this estimation, we conclude that the leakage

bounds provided by our proposed Jamais Vu schemes make the

schemes reasonably secure. Without Jamais Vu, the attacker can

extract a secret that has an arbitrary length with 100% success

rate [50].

C ARTIFACTS

C.1 Abstract

Our artifact provides a complete gem5 implementation of Jamais

Vu, along with scripts to evaluate the SPEC’17 benchmarks. We also

provide a GitHub repository with the gem5 implementation and

required scripts to reproduce our simulation results. Finally, we pro-

vide a binary analysis infrastructure based on Radare2 that allows

the compilation of binaries with the proposed Epoch markings.

C.2 Artifact Check-List (Meta-Information)
• Program: SPEC’17

• Compilation: We compiled SPEC’17 with clang-3.9 and the gem5

simulation infrastructure with gcc-5.4.0.

• Binary: Our pass is implemented on top of Radare2 4.3.0.

• Data set: Reference input size of SPEC’17 benchmarks.

• Run-time environment: Linux with Docker containers.

• Run-time state: We use SimPoint methodology to generate up to

10 representative intervals that accurately characterize end-to-end

performance. Each interval consists of 50 million instructions.

• Output: Plots are output by the provided scripts. Scripts are pro-

vided to generate each of the Evaluation figures.

• Experiments: Please refer to Section C.5.1.

• How much disk space required (approximately): 1GB.

• How much time is needed to prepare work�ow (approxi-

mately): 10 minutes.

• Howmuch time is needed to complete experiments (approx-

imately): 1 day.

• Publicly available: Yes.

• Code licenses (if publicly available):MIT License.

• Work�ow framework used: HTCondor for job management.

• Archived: DOI: 10.5281/zenodo.4429956. But we recommend using

the latest version from GitHub.

C.3 Description

C.3.1 How to Access. Our complete simulation implementation is

available at https://github.com/dskarlatos/JamaisVu.

1073

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

C.3.2 Hardware Dependencies. Any hardware capable of running

the gem5 simulator is sufficient.

C.3.3 So�ware Dependencies. We use Docker and provide a com-

plete Dockerfile that captures all the software dependencies re-

quired to build our simulation infrastructure.

C.3.4 Data Sets. We run SPEC17 with the reference input size.

Because of a simulation issue with gem5, we exclude 2 applications

(cactuBSSN and imagick) out of 23 from SPEC17.

C.4 Installation

Build time: 5 to 10 minutes depends on the machine.

Required libraries. All libraries that are required by gem5. The

instruction can be found at https://www.gem5.org/documentation

/learning_gem5/part1/building/. We also provide a Docker image

for building gem5.

C.5 Experiment Work�ow

C.5.1 Overview. To reproduce our results, we created 5 studies

under directory $GEM5_ROOT/scripts. Each study corresponds to

a figure in the Evaluation section. The description of each study is

as the following:

(1) perf, which corresponds to Figure 7 in the paper. It simu-

lates all three schemes plus unsafe baseline and measures

normalized execution time;

(2) elemCnt, which corresponds to Figure 8 in the paper. It per-

forms a sensitivity study on the number of entries per bloom

filter for CoR, Epoch-Iter-Rem, and Epoch-Loop-Rem;

(3) activeRecord, which corresponds to Figure 9 in the paper. It

performs a sensitivity study on the number of {ID, PC-Buffer}

pairs for Epoch-Iter-Rem and Epoch-Loop-Rem;

(4) CBFBits, which corresponds to Figure 10 in the paper. It per-

forms a sensitivity study on the number of bits per counting

bloom filter entry for Epoch-Iter-Rem and Epoch-Loop-

Rem;

(5) CCGeometry, which corresponds to Figure 11 in the paper. It

performs a sensitivity study on the counter cache geometry

for Counter.

C.5.2 Clone Jamais Vu. Jamais Vu is publicly available on GitHub.

To clone the repository, run

git clone https://github.com/dskarlatos/JamaisVu.git

C.5.3 Environment Setup. Set environment variables

export GEM5_ROOT=/path/to/gem5

export WORKLOADS_ROOT=/path/to/SPEC2017

Note that, the workload directory must be structured appropri-

ately before using any of the scripts. Please refer to this instruction1

for more details.

C.5.4 Compile gem5. Due to a gem5 bug2, it must be compiled in

Ubuntu 16.04 to avoid crashing on some benchmarks. To address

this issue, we provide a Docker image for compilation. To build the

Docker image and compile gem5, run command

1https://github.com/dskarlatos/JamaisVu/blob/main/scripts/README.md#structure-
of-workload-directory
2https://gem5.atlassian.net/browse/GEM5-631

cd docker && docker build -t jamaisvu .

C.5.5 Submit Jobs. Assuming that the system has HTCondor in-

stalled, enter $GEM5_ROOT/scripts/, the script submit is used for

job submission. Run command

cd $GEM5_ROOT/scripts/ && ./submit */*.cfg

will submit jobs for every study. It takes about 20 minutes to submit

all the jobs.

C.5.6 Check Status. To check job status via condor: run command

condor_q

which prints the total number of running jobs and remaining jobs.

To print detailed job status information for each study: under

$GEM5_ROOT/scripts/, run command

./status

It takes about 1 day to finish all jobs on a server with 80 cores.

C.5.7 Collect Results. After all jobs are finished, you can collect

the experiment results. Each study has a script named collect

under its directory, the script will read gem5 statistics and create

plots for the study. Under $GEM5_ROOT/scripts/, run command

find . -name collect -type f -exec {} >/dev/null \;

to collect results for all studies (do not forget backslash and semi-

colon at the end of the command). After executing this command,

there will be figures in PDF format under $GEM5_ROOT/scripts.

Please refer to Section C.6 for expected results.

C.6 Evaluation and Expected Result

The collected plots for each study should match its corresponding

figure in the directory $GEM5_ROOT/scripts/expectedResults.

C.7 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-

badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the Power of

Simple Branch Prediction Analysis. In Proc. of the ACM Conference on Computer
and Communications Security (CCS).

[2] Onur Aciiçmez and Jean-Pierre Seifert. 2007. Cheap Hardware Parallelism Implies
Cheap Security. In Proc. of the Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC).

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc., USA.

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In Proc. of
the IEEE Symposium on Security and Privacy (S&P).

[5] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.
In Proc. of the IEEE Symposium on Security and Privacy (S&P).

[6] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTher-
Spectre: Exploiting Speculative Execution through Port Contention. In Proc. of
the ACM Conference on Computer and Communications Security (CCS).

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News (2011).

1074

Jamais Vu: Thwarting Microarchitectural Replay A�acks ASPLOS ’21, April 19–23, 2021, Virtual, USA

[8] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM (July 1970).

[9] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. 2018. SPEC CPU2017:
Next-generation compute benchmark. In Proc. of the Companion of the ACM/SPEC
International Conference on Performance Engineering (ICPE).

[10] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. 2018. Racing in Hyperspace:
Closing Hyper-Threading Side Channels on SGX with Contrived Data Races. In
Proc. of the IEEE Symposium on Security and Privacy (S&P).

[11] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting privileged side-channel attacks in shielded execution with Déjá Vu.
In Proc. of the ACM Asia Conference on Computer and Communications Security
(ASIACCS).

[12] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. 2019. Secure TLBs. In Proc. of the
ACM/IEEE International Symposium on Computer Architecture (ISCA).

[13] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
Proc. of the USENIX Security Symposium (USENIX).

[14] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX. In
Proc. of the USENIX Security Symposium (USENIX).

[15] Michel Dubois, Murali Annavaram, and Per Stenstrm. 2012. Parallel Computer
Organization and Design. Cambridge University Press.

[16] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In Proc. of the IEEE/ACM
International Symposium on Microarchitecture (MICRO).

[17] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.
2018. BranchScope: A New Side-Channel Attack on Directional Branch Pre-
dictor. In Proc. of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[18] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. 2000. Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw. (2000).

[19] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary Hardware.
Journal of Cryptographic Engineering 8, 1 (2018).

[20] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the Fourth BeWith You:
A Microarchitectural Side Channel Attack on Several Real-World Applications of
Curve25519. In Proc. of the ACM Conference on Computer and Communications
Security (CCS).

[21] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh Razavi.
2020. ABSynthe: Automatic Blackbox Side-channel Synthesis on Commodity
Microarchitectures. In Proc. of the Symposium on Network and Distributed System
Security (NDSS).

[22] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In Proc. of the USENIX Security Symposium (USENIX).

[23] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In Proc. of the USENIX Security Symposium
(USENIX).

[24] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In Proc. of the
USENIX Security Symposium (USENIX).

[25] D. Gullasch, E. Bangerter, and S. Krenn. 2011. Cache Games – Bringing Access-
Based Cache Attacks on AES to Practice. In Proc. of the IEEE Symposium on
Security and Privacy (S&P).

[26] D. Guo, Y. Liu, X. Li, and P. Yang. 2010. False Negative Problem of Counting
Bloom Filter. IEEE Transactions on Knowledge and Data Engineering 22, 5 (2010),
651–664.

[27] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism 7, 4 (2005), 1–28.

[28] John L Hennessy and David A Patterson. 2011. Computer Architecture: a Quanti-
tative Approach. Elsevier.

[29] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual.
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/6
4-ia-32-architectures-software-developer-instruction-set-reference-manual-
325383.pdf.

[30] Intel. 2020. Intel 64 and IA-32 Architectures Optimization Reference Manual.
https://software.intel.com/content/dam/develop/public/us/en/documents/64-
ia-32-architectures-optimization-manual.pdf.

[31] Intel. 2020. Intel VTune Profiler. https://software.intel.com/content/www/us/en
/develop/tools/vtune-profiler.html.

[32] Mike Johnson. 1991. Superscalar Microprocessor Design. Prentice Hall Englewood
Cliffs, New Jersey.

[33] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel.
2016. A High-Resolution Side-channel attack on the Last Level Cache. In Proc. of
the Design Automation Conference (DAC).

[34] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud.
In Proc. of the USENIX Security Symposium (USENIX Security).

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In
Proc. of the IEEE Symposium on Security and Privacy (S&P).

[36] Erich L Lehmann and Joseph P Romano. 2006. Testing statistical hypotheses.
Springer Science & Business Media.

[37] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. CATalyst: Defeating last-level cache side channel at-
tacks in cloud computing. In Proc. of the IEEE International Symposium on High
Performance Computer Architecture (HPCA).

[38] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In Proc. of the IEEE Symposium
on Security and Privacy (S&P).

[39] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.
Memjam: A false dependency attack against constant-time crypto implementa-
tions. International Journal of Parallel Programming 47, 4 (2019), 538–570.

[40] Michael Neve and Jean-Pierre Seifert. 2006. Advances on Access-Driven Cache
Attacks on AES. In Proc. of the International Workshop on Selected Areas in Cryp-
tography (SAC).

[41] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting SGX enclaves from practical side-channel attacks.
In Proc. of the USENIX Annual Technical Conference (ATC).

[42] Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020. Autarky: closing
controlled channels with self-paging enclaves. In Proc. of the European Conference
on Computer Systems (EuroSys).

[43] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: the Case of AES. In Proc. of the Cryptographers’ Track at the RSA
Conference (CT-RSA).

[44] Arash Partow. 2020. C++ Bloom Filter Library. https://github.com/ArashPartow
/bloom.

[45] Colin Percival. 2005. Cache Missing For Fun And Profit. In Proc. of the Technical
BSD Conference (BSDCan).

[46] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In Proc. of the USENIX Security Symposium (USENIX).

[47] Radare2. 2020. UNIX-like reverse engineering framework and command-line
toolset. https://github.com/radareorg/radare2.

[48] Alberto Ros and Stefanos Kaxiras. 2018. The Superfluous Load Queue. In Proc. of
the IEEE/ACM International Symposium on Microarchitecture (MICRO).

[49] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In Proc. of
the Symposium on Network and Distributed System Security (NDSS).

[50] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Tor-
rellas, and Christopher Fletcher. 2019. MicroScope: Enabling Microarchitectural
Replay Attacks. In Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA).

[51] Robert M Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple Arith-
metic Units. IBM Journal of Res. and Dev. 1 (1967), 25–33.

[52] Daniel Townley and Dmitry Ponomarev. 2019. SMT-COP: Defeating Side-Channel
Attacks on Execution Units in SMT Processors. In Proc. of the International
Conference on Parallel Architectures and Compilation Techniques (PACT).

[53] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A practical
attack framework for precise enclave execution control. In Proc. of the Workshop
on System Software for Trusted Execution (SysTEX).

[54] Pepe Vila, Boris Köpf, and José F Morales. 2019. Theory and practice of finding
eviction sets. In Proc. of the IEEE Symposium on Security and Privacy (S&P).

[55] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
Proc. of the ACM Conference on Computer and Communications Security (CCS).

[56] Zhenghong Wang and Ruby B Lee. 2006. Covert and Side Channels Due to
Processor Architecture. In Proc. of the Annual Computer Security Applications
Conference (ACSAC).

[57] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In Proc.
of the IEEE Symposium on Security and Privacy (S&P).

[58] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution In-
visible in the Cache Hierarchy. In Proc. of the IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[59] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World. In Proc. of the IEEE Symposium on Security and
Privacy (S&P).

1075

ASPLOS ’21, April 19–23, 2021, Virtual, USA D. Skarlatos, Z. N. Zhao, R. Paccagnella, C. W. Fletcher, J. Torrellas

[60] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In Proc. of the USENIX Security Sym-
posium (USENIX).

[61] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA. Journal of Cryptographic Engineering 7,
2 (2017).

[62] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proc. of the ACM
Conference on Computer and Communications Security (CCS).

[63] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. 2016. A Software Approach
to Defeating Side Channels in Last-Level Caches. In Proc. of the ACM Conference
on Computer and Communications Security (CCS).

1076

