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Abstract

Over the past few decades, the pursuit of higher computational density and resource sharing
has resulted in substantially improved performance and efficiency of modern computer systems.
However, this shift has also introduced serious security concerns, notably side-channel attacks.
Public cloud computing, with its ever-growingmarket size and extensive hardware resource sharing
among mutually-distrusting tenants, stands out as a prime target for these attacks. Recognizing
these threats, this thesis delves deeply into both side-channel vulnerabilities and defenses in public
cloud environments.
On the attack front, this thesis examines the intricacies of conducting end-to-end side-channel

attacks in modern public clouds, including how to co-locate with the victim program and set up
side channels to extract information in a noisy, dynamic production cloud environment. This thesis
introduces methods to increase the likelihood of an attacker co-locating with a target victim, fill-
ing a critical gap for side-channel attacks in public clouds. Additionally, the thesis presents novel
techniques for setting up and monitoring cache-based side channels in a noisy public cloud envi-
ronment. The result of both works is the first demonstration of cross-tenant information leakage in
the Google Cloud.
On the defense front, this thesis introduces Untangle, a framework to quantify information leak-

age in schemes that perform dynamic partitioning of hardware resources, which are promising
side-channel defenses. Using Untangle, the thesis proposes design principles and defense mecha-
nisms to tightly bound and reduce the leakage, resulting in low-leakage high-performance dynamic
partitioning schemes. Besides defending against conventional side-channel attacks, this thesis also
develops both hardware-only and hardware-software co-designmechanisms to substantially reduce
the execution overhead of transient execution defenses.
Finally, this thesis also explores new side channels in modern Intel processors and develops

defenses for microarchitectural replay attacks, an emerging type of attack.
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CHAPTER 1: Introduction

Over the past decades, the pursuit of higher computational density and resource sharing has re-
sulted in substantially improved performance and efficiency of modern computer systems. How-
ever, this evolution has also introduced serious security concerns, notably microarchitectural side-
channel attacks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. These attacks exploit hardware
resources shared between a victim and an attacker. Observing changes in the victim’s utilization
of these shared resources, the attacker can exfiltrate secret information from the victim, such as
cryptographic keys [3, 15, 17].
In 2018, the disclosure of Spectre [18] and Meltdown [19] elevated the threat of side-channel

attacks to the next level, leading to the emergence of speculative side-channel attacks. Following
Spectre and Meltdown, numerous speculative execution attacks [20, 21, 22, 23, 24, 25, 26, 27, 28]
were discovered. These attacks combine conventional microarchitectural side channels with out-
of-order execution, a fundamental performance optimization in modern processors. Speculative
side-channel attacks can bypass both software checks (e.g., bounds checks) and hardware isola-
tion mechanisms (e.g., the privileged bit in a page-table entry) to access a wide range of secrets,
including kernel data.
Public cloud computing, which is fundamentally based on sharing hardware resources among

mutually distrusting tenants, stands out as a prime target for these attacks. Making matters worse,
cloud vendors are shifting towards emerging cloud computing paradigms, such as Function-as-a-
Service (FaaS) computing [29, 30, 31], aiming to encouragemore resource sharing between tenants.
Additionally, cloud vendors are developing optimizations to harvest under-utilized resources of
other tenants [32, 33, 34, 35]. Although these emerging paradigms and optimizations promise
greater efficiency, they also open up more opportunities for side-channel attacks.

1.1 THE PROBLEMS

1.1.1 Problem 1: Are Side-Channel Attacks Practical in Modern Public Clouds?

Despite the threats of microarchitectural side-channel attacks, cloud vendors are skeptical about
the practicality of these attacks [36]. For example, AWS dismisses certain side channels—such
as last-level cache (LLC) side channels [3, 4, 15]—as impractical due to noise in the production
environment [36]. Indeed, most prior side-channel attacks have been developed and evaluated in
local, quiescent, lab environments. Demonstrating these attacks in public clouds requires non-
trivial efforts and new attack techniques to overcome the noise and other practical challenges.
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Generally speaking, side-channel attacks in public clouds comprise two steps: (i) co-location and
(ii) extraction. In the co-location step, the attacker needs to launch containers or virtual machines
(VMs) such that they are scheduled to run on the same physical machine as the victim container
or VM. This step is challenging due to the vast scale of data centers and cloud vendors’ opaque
host selection policies. Although there have been some previous studies [37, 38, 39] on the risk
of co-location in public cloud from 2009 to 2015, the evolution of cloud computing has rendered
techniques proposed in previous studies mostly ineffective. For example, Ristenpart et al. [37] and
Xu et al. [38] used network information, such as host IP address or packet routing information,
to detect co-location. However, such information is now hidden by cloud vendors. Varadara-
jan et al. [39] used a pairwise method to test if two VMs are co-located. However, pairwise meth-
ods scale poorly to the number of VMs or containers under testing. Scalability matters because the
attacker may need to launch many VMs or containers due to the growth of the data center size in
recent years.
Even if the co-location can be reliably achieved, performing the extraction step is not an easy task

either. Taking the LLC side channel as an example, it requires three substeps to extract information
from the victim [3] (detailed in Section 2.2.3). First, the attacker sets up LLC side channels through
a process of constructing LLC eviction sets. Each eviction set can be used to monitor memory
accesses to a specific LLC set. Second, the attacker identifies which eviction set corresponds to the
LLC set that is accessed by the victim in a secret-dependent manner. Finally, the attacker monitors
the LLC set of interest and extracts information from the victim. All of these three steps need to be
completed in a noisy production environment. If the target victim runs in a dynamic environment
like FaaS, where user workloads are frequently spawned and terminated, these steps also have to
finish within a short time window of co-location between the attacker and victim. Additionally, the
wide adoption of non-inclusive LLC and the fact that huge pages are inaccessible in containerized
environments have made this attack process even harder. Thus, while İnci et al. [15, 40] conducted
an LLC Prime+Probe attack on AWS EC2 in 2015, their techniques are incompatible with modern
clouds, as their techniques relied on long-running attack steps, huge pages, and inclusive LLCs.
Given these practical challenges of performing side-channel attacks in public clouds, this thesis

tries to answer the following questions: (1) Should side-channel attacks be a security concern of
public cloud vendors? (2) What techniques can a determined attacker use to make side-channel
attacks in public clouds more practical?

1.1.2 Problem 2: How to Mitigate Side Channels in Public Clouds with Low Overhead?

Under the premise that side-channel attacks are practical, many defenses have been proposed
to mitigate these attacks. These defenses range from software solutions such as data-oblivious
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programming [41, 42, 43], to hardware solutions such as randomizing resource usage patterns [44,
45, 46, 47, 48, 49, 50, 51, 52] or partitioning resources [53, 54, 55, 56, 57, 58, 59, 60, 61].
Adopting these solutions for general-purpose applications is challenging. Randomization-based

schemes usually offer high performance but not comprehensive security guarantees. Partition-
based schemes that use a fixed partition size throughout application execution—i.e., static resource
partitioning—provide comprehensive security guarantees, but they can lead to significant perfor-
mance overhead and resource under-utilization. Dynamically changing partition sizes can improve
performance, but such schemes can reintroduce information leakage and hence have weaker secu-
rity guarantees. While data-oblivious programming practices are increasingly adopted by crypto-
graphic libraries, applying these practices to software outside of cryptographic libraries is limited
by programming difficulty and performance overhead.
Given these challenges, this thesis also seeks to answer the following questions: (1) How to ana-

lyze the security guarantees of high-performance but leaky solutions like dynamic partitioning? An
understanding of their security guarantees allows the user to make informed security-performance
trade-off decisions when using these solutions. (2) How can the performance overhead of defenses
be reduced without compromising their security guarantees?

1.2 CONTRIBUTIONS OF THIS THESIS

To answer the questions in Section 1.1, this thesis makes contributions towards practical side-
channel attacks and defenses in public clouds. Specifically, this thesis has the following contribu-
tions.
•Co-location in public cloud FaaS (Chapter 3). As discussed in Section 1.1.1, the first step of

side-channel attacks in public clouds is to co-locate the attacker program with the victim program
on the same physical host. This step is challenging due to the vast scale of data centers and cloud
vendors’ opaque host selection policies. To address these challenges, we devised a novel technique
for fingerprinting physical hosts in container environments. Our key insight is that the attacker can
bypass software countermeasures and learn sensitive host information by directly interacting with
the underlying shared host hardware. We demonstrated that these fingerprints identify individual
hosts with more than 99.9% accuracy. Using this, we discovered an exploitable host selection
behavior in Google Cloud Run [30], a production serverless platform. We then demonstrated an
attack with a 100% success rate of co-locating the attacker containers with at least one victim
container. Moreover, the attacker is co-located with 61%–100% of all the victim containers across
three major data centers, costing only about 25 USD.
• Last-level cache Prime+Probe attack in the modern public cloud (Chapter 4). Once co-
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located with a victim, the attacker then sets up a side channel and monitors the victim’s activities.
This step is challenging, as the channels are inundated with background noise in a production en-
vironment. Overcoming this challenge, we developed a series of noise-resilient attack techniques.
Using these techniques, attackers can quickly set up LLC side channels in just 2.4 minutes on av-
erage in the production Google Cloud Run environment, enabling the monitoring of all memory
accesses in the system. The same process would take more than ten hours using prior techniques,
which are susceptible to noise. This efficiency in channel setup is vital because attackers might
have only a few minutes to retain co-location with their target, due to the dynamic nature of clouds.
Finally, we showcased, for the first time, an end-to-end attack in Google Cloud Run that extracts
the secret nonce from a vulnerable ECDSA implementation in a mere 17 seconds after setting up
the channel.
Impact: Our works (Chapters 3–4) highlight the realistic threats posed by side channels in pro-

duction cloud environments, refuting the belief among cloud vendors that such attacks are imprac-
tical. Following our report, Google filed a critical-level bug report to their product team and AWS
revised their security whitepaper.
• High-performance, low-leakage dynamic resource partitioning (Chapter 5). A principled

approach to defend against side-channel attacks at some performance cost is to statically partition
shared hardware resources among mutually distrusting tenants. Dynamic partitioning, which dy-
namically adjusts partition sizes based on program demand, tries to minimize performance loss.
However, dynamic partitioning can reintroduce side-channel leakage.
To address this challenge, we proposed Untangle, the first framework to tightly quantify and

reduce the information leakage in dynamic partitioning. Untangle’s main contribution is a formal
model that cleanly splits the information leakage into two categories: (1) action leakage from
how the victim resizes and (2) scheduling leakage from when the victim resizes. Using Untangle,
we introduced design principles for partitioning techniques that help eliminate the action leakage
altogether. We also developed a model to conservatively bound and reduce the scheduling leakage
without the impractical analysis of program timing. The versatility of Untangle makes it suitable
for partitioning various hardware resources, and its application to a conventional dynamic LLC
partitioning scheme achieved a 78% reduction in information leakage without performance loss.
Impact: Untangle stands out as a pioneering framework for tightly measuring and reducing

information leakage in dynamic partitioning. It offers a balanced trade-off: minimal and controlled
information leakage while retaining high performance.
• High-performance speculative side-channel defenses (Chapters 6–7). The general ap-

proach to defend against speculative side-channel attacks is to delay the execution of vulnerable
instructions until they are no longer speculative. However, this can create high execution overhead.
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Our work (Chapter 6) highlights that the primary contributor to overhead is delaying execution
until no memory consistency violations (MCVs) are possible. As a solution, we proposed a gen-
eral hardware mechanism, Pinned Loads [62], that extends the cache coherence protocol so that it
prevents MCVs from occurring as early as possible. In our experiments, Pinned Loads reduced the
execution overhead of three popular defenses by around 50%.
Furthermore, we developed a hardware-software co-design framework named InvarSpec (Chap-

ter 7). InvarSpec statically analyzes the data and control flows of a program, identifying “safe in-
structions” that cannot influence whether vulnerable instructions should execute and their operand
values. This unique insight arises from a static program analysis pass that accounts for all poten-
tial program paths—unlike hardware, whose knowledge is limited to the current execution path.
Using this information, InvarSpec hardware allows the execution of vulnerable instructions ear-
lier, without waiting for the completion of these “safe instructions”, thereby substantially reducing
execution overhead.
Impact: Intel showed substantial interest in both approaches, leading to two internships there

for technology transfer.
• Contention-based side-channel attacks exploiting the page walker (Appendix A).We in-

troduced Binoculars [16], the first indirect and stateless side channel. It exploits resource con-
tention during page-walk operations, which defenses typically overlook. Remarkably, Binoculars
produces timing perturbations of up to 20k cycles from just a single dynamic instruction. These
perturbations are at least two orders of magnitude greater than those in other known microarchitec-
tural side channels. With Binoculars, we showcased an attack that extracts the secret nonce from
a vulnerable ECDSA implementation in just one victim run, thanks to the channel’s exceptional
signal-to-noise ratio. We also demonstrated an attack that compromises Linux’s kernel address-
space layout randomization (KASLR) even with existing software defenses turned on. As this at-
tack requires the attacker and the victim to run on the same physical core but different hyperthreads,
it is not applicable to the modern public cloud [36] and may only concern client environments with
hyperthreading enabled. As a result, this contribution is presented as an appendix of the thesis.
Impact: The discovery of Binoculars instigated in-depth discussions within Intel. In addition,

the approach we used to determine its root cause inspired the work of other researchers.
• Thwarting microarchitectural replay attacks (Appendix B).Microarchitectural Replay At-

tacks (MRAs) is a new class of attacks that can de-noise arbitrary side channels. MRAs exploit
transient instructions, that is, instructions that are executed but do not retire, to replay vulnerable
instruction execution to amplify side-channel signals. Dimitrios Skarlatos and I developed the first
defense named Jamais Vu that mitigates MRAs. From a high level, Jamais Vu detects when an
instruction is squashed. Then, as the instruction is reinserted into the pipeline, Jamais Vu automat-
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ically places a fence before it to prevent the attacker from speculatively executing it again. This
work presents several Jamais Vu designs that offer different trade-offs between security, execution
overhead, and implementation complexity. One design, called Epoch-LoopRem, effectively mit-
igates MRAs, has an average execution time overhead of 13.8% in benign executions, and only
needs counting Bloom filters. An even simpler design, called Clear-on-Retire, has an average ex-
ecution time overhead of only 2.9%, although it is less secure. My contributions in this work are a
security analysis of Jamais Vu, a static program analysis pass used by one of the Jamais Vu designs,
and implementing and evaluating various Jamais Vu designs.
Impact: JamaisVu is the first defense scheme againstMicroarchitectural ReplayAttacks (MRAs).
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CHAPTER 2: General Background

This chapter provides a general background to this thesis. Additional background information
specific to an individual chapter is provided within that chapter.

2.1 FUNCTION-AS-A-SERVICE

2.1.1 Overview

Function-as-a-Service (FaaS) [29, 30, 31] is an emerging cloud computing paradigm that disag-
gregates a large monolithic application into many small standalone components called functions.
Each function typically has a single independent functionality. To perform the task of the origi-
nal monolithic application, these functions collaborate and communicate with each other over the
network. Consequently, functions are usually implemented as web services that can be invoked
through various means, such as HTTP requests, WebSockets, or remote procedure calls [63]. In
this thesis, we use function and service interchangeably.

Function deployment and management. To simplify the deployment and management of func-
tions, each function is packed with its dependencies into a lightweight, self-contained container
image. The containerization process ensures a consistent execution of the function in various en-
vironments.
The FaaS platform orchestrator fully manages function instances at container-level granularity.

When a function is invoked by a user or another function, the orchestrator launches a new container
instance of the requested function to process the incoming request. After serving the request, the
instance enters an idle state, releasing its CPU and awaiting further incoming requests. Idle in-
stances are typically charged minimally or not at all. If an instance remains idle for an extended
period of time (e.g., 15 minutes), it is terminated and destroyed [64]. As a result, user instances
often have a short lifetime [64, 65, 66].

Autoscaling. A FaaS platform can dynamically adjust the number of instances of a function based
on its demand, a feature known as autoscaling [67]. When there is a surge in requests for a func-
tion that exceeds its current capacity, the orchestrator scales out, deploys additional instances to
accommodate the increase in demand. Conversely, when the demand for a function declines, the
orchestrator scales in by terminating excess instances, thus freeing up resources for instances of
other functions.

Instance placement. When selecting a host to place a new container instance, a typical FaaS
orchestrator first identifies all the hosts that meet specific constraints. Then, among such hosts,
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it selects the one with the highest score, based on criteria such as resource utilization and load
balancing [68]. The orchestrator can tweak the instance placement algorithm by incorporating
additional policies, such as affinity and anti-affinity rules. Affinity rules aim to place instances
from functions that frequently interact with each other on the same host to reduce communication
overhead. In contrast, anti-affinity rules attempt to distribute instances of the same function across
different hosts for fault tolerance.

2.1.2 The Cloud Run Platform

In this thesis, we focus mainly on the Cloud Run platform [30] from Google Cloud as our tar-
get. Cloud Run is a fully-managed serverless computing platform designed for containers, and it
powers Google Cloud’s FaaS platform. Users of Cloud Run can deploy services using either pre-
defined container templates or custom-built container images. As user containers can run arbitrary
programs on Cloud Run, the platform offers two types of sandboxed execution environments to
ensure software security.

First generation environment (GEN 1) [69]. Cloud Run uses gVisor [70] to sandbox Linux con-
tainers in its first-generation environment without host hardware virtualization. Figure 2.1 shows
an overview of gVisor. At a high level, gVisor runs as a userspace kernel that intercepts and emu-
lates normal system calls. This design prevents the untrusted application from directly interacting
with the host kernel, reducing the attack surface. Consequently, the user application cannot access
sensitive host information. For example, gVisor conceals the host CPUmodel name and cache sizes
by emulating /proc/cpuinfo. Additionally, gVisor also virtualizes the host’s runtime states, such
as its IP address and uptime.

Applica�on

gVisor

Host Kernel

Unprivileged

Privileged

System calls

Limited system calls

Figure 2.1: Overview of gVisor container sandbox [70].

Second generation environment (GEN 2) [69]. Cloud Run uses lightweight virtual machines
(VMs) to sandbox user programs in its second-generation environment, which was introduced in
December 2022 [71]. In GEN 2, the untrusted user program runs inside a guest VM on the virtu-
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alized host hardware. Using hardware virtualization, the hypervisor can trap and emulate certain
x86 instructions like cpuid, thus creating an illusion of the hardware on which the user runs. As a
result, the user has no access to sensitive host information.

Comparison between GEN 1 and GEN 2. Both execution environments have their pros and cons,
which means that they are complementary rather than substitutional. Since GEN 1 uses Linux con-
tainers, it has a small resource footprint and features fast start-up time [69]. This feature is crucial
for user-facing web applications that are latency-critical [72, 73, 74], such as web search [74], on-
line collaborative document editing [75], and key-value stores [74, 76, 77]. Increases in latency
can negatively impact advertisement revenue [78]. Yet, a limitation of GEN 1 lies in its potential
compatibility issues stemming from system call emulation.
Conversely, GEN 2 provides full Linux compatibility, and in a steady state, it performs better

than GEN 1. However, its large resource footprint results in longer start-up times [69]. At the
time of this writing, Cloud Run uses GEN 1 for services by default [69]. Moreover, GEN 1 is used
in other Google Cloud products like Cloud Function [79] (Google Cloud’s equivalent of AWS
Lambda [29]). Therefore, in this thesis, we primarily focus our exploration on GEN 1 and demon-
strate the transferability of our results to GEN 2.

2.2 MICROARCHITECTURAL SIDE-CHANNEL ATTACKS AND DEFENSES

2.2.1 Overview

In a side-channel attack, the attacker exploits hardware resources that are shared with the victim.
Specifically, when a program’s execution modulates (i.e., changes the utilization of) hardware re-
sources (i.e., channels) as a function of its secret data, an attacker can measure these modulations
and from them infer the secret.
The ways in which hardware channels can be modulated to pass information can be broken

down along two axes. To start, channel modulations are stateful if they leave a persistent state
change (e.g., the eviction of a line from the cache) [1, 2, 3, 6, 7, 80, 81, 82, 83, 84, 85, 86], or
alternatively stateless if they create only temporary contention on a resource (e.g., on an execution
unit) [9, 10, 12, 13, 87, 88, 89, 90, 91]. Orthogonally, channels can be modulated directly by
the execution of the victim instruction’s micro-ops, or indirectly by operations that occur outside
the purview of the instruction’s micro-ops.1 The large majority of channel modulations are direct
(e.g., all of the above works). An example is a cache attack due to the execution of a victim
memory instruction that evicts a line from the cache. On the other hand, there are a handful of

1Indirect modulations have been called “implicit” modulations by prior work [92].
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channels involving indirect operations [8, 92, 93, 94, 95, 96, 97]. Examples are “implicit” memory
operations due to hardware prefetchers or page walkers that occur beyond the purview of micro-
ops.
Historically, stateless channels have been considered more difficult to exploit than stateful chan-

nels. Indeed, it is relatively easy to monitor a stateful channel because its effect persists after the
victim instruction modulating it has retired. Further, the contention effects of stateless channels
are typically small, which exacerbates measurement noise.

2.2.2 Cache-Based Side-Channel Attacks

Since caches are shared between processes in different security domains, they provide an op-
portunity for an attacker to exfiltrate sensitive information about a victim process by observing
their cache utilization. This constitutes a cache-based side-channel attack. Such attacks can be
classified into reuse-based attacks and contention-based attacks [50].
Reused-based attacks rely on shared memory between attacker and victim, often the conse-

quence of memory deduplication [98]. In such attacks, the attacker monitors whether shared
data are brought to the cache due to victim accesses. Notable examples of such attacks include
Flush+Reload [6], Flush+Flush [7], and Evict+Reload [85]. However, as memory deduplication
across security domains is disabled in the cloud [36, 99], these attacks are inapplicable.
Contention-based attacks, such as Prime+Probe [1, 2], do not require shared memory between

attacker and victim. The core attack primitive of Prime+Probe is called an eviction set. An eviction
set for a cache set 𝑠 is a set of cache lines that, once accessed, can evict any cache line mapped to 𝑠
by fully occupying 𝑠 [3, 4]. Section 4.2.1 provides detailed background information on constructing
eviction sets. Using an eviction set for 𝑠, the attacker can monitor the victim’s memory accesses
to cache set 𝑠 with Prime+Probe. During the attack, the attacker first primes 𝑠 by filling all its
ways with cache lines from an eviction set for 𝑠. Subsequently, the attacker continuously probes
these lines, measuring the latency of accessing them. If the victim accesses 𝑠, it evicts one of the
attacker’s cache lines, which the attacker can detect through increased probe latency. The attacker
then re-primes 𝑠 and repeats the probing process to continue monitoring.
Cloud vendors generally prevent processes of different tenants from sharing the same physical

core at the same time [36, 100]. Therefore, the attacker has to perform a cross-core attack targeting
the shared LLC. On modern processors, the LLC is split into multiple slices. Each physical address
is hashed to one of the slices.
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Table 2.1: Steps of an LLC Prime+Probe attack in clouds.

Step Description Discussed in

STEP 1. Co-location Co-locate the attacker program on the same physical
host as the target victim program Chapter 3

STEP 2. Prepare LLC side
channels

Construct numerous eviction sets, each correspond-
ing to a potential target LLC set Sections 4.4–4.5

STEP 3. Identify target
LLC sets

Scan LLC sets to identify those that the victim ac-
cesses in a secret-dependent manner Sections 4.6–4.7

STEP 4. Exfiltrate
information Monitor the target LLC sets and extract information Sections 4.6–4.7

2.2.3 Last-Level Cache Prime+Probe Attack in Public Cloud

Mounting LLC Prime+Probe attacks in the modern public cloud requires several steps [3, 4, 15,
37, 101], as listed in Table 2.1. First, the attacker co-locates their program with the target victim
program on the same physical machine (STEP 1) [37, 38, 39, 101]. Second, the attacker prepares
LLC channels by constructing LLC eviction sets (STEP 2) [3, 4]. In practice, the attacker generally
does not know the target LLC sets, which are LLC sets accessed by the victim in a secret-dependent
manner. Hence, in STEP 2, the attacker needs to build hundreds to tens of thousands of eviction
sets, each corresponding to a potential target LLC set [3, 4, 102]. Then, the attacker scans through
the potential target LLC sets and identifies the actual target LLC sets (STEP 3). Finally, the attacker
monitors the target LLC sets with Prime+Probe and exfiltrates the secret (STEP 4).

2.2.4 Microarchitectural Side-Channel Defense Through Resource Partitioning

A popular way to defend against side-channel attacks is to partition the shared resource among
different security domains. The partition can be spatial or temporal. Spatial partitioning divides
the resource into non-overlapping sections used by different domains (e.g., way-partitioning in
caches [61]). A temporal partitioning scheme splits the time into non-overlapping slices, and
only one domain is allowed to use the resource in each time slice (e.g., interconnect traffic shap-
ing [103]). When it is not ambiguous, we use the term partition size as the portion of the total
resource assigned to one domain, regardless of spatial or temporal partitioning.
Depending on the partitioning policy, a scheme can either fix the partition size or dynamically

resize it to adapt to a program’s demand. The former schemes are static, while the latter are dynamic
(e.g., [104, 105]).
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2.2.5 Microarchitectural Side-Channel Leakage Detection

Information leakage through side channels can be detected using a variety of techniques. One
approach is to leverage taint analysis [106, 107]. In this case, secret data are annotated as taint
sources. Then, taint propagation is used to detect instructions that have secret-dependent usage
of the resource of interest, or instructions that are control-dependent on secrets. Other approaches
include symbolic execution [108, 109, 110] or abstract interpretation [111, 112, 113]. These specific
works formally model the behavior of a cache and find instructions that put the cache into a secret-
dependent state.

2.3 SPECULATIVE SIDE-CHANNEL ATTACKS AND DEFENSES

2.3.1 Out-of-Order Execution

Dynamically-scheduled processors execute data-independent instructions in parallel [114], out
of program order. Instructions are dispatched to reservation stations (RS) in program order, where
they await execution. An instruction becomes ready to execute once its input operands have been
computed. In each cycle, a hardware scheduler picks a subset of ready instructions and issues them
to execution units. After they execute, their outputs become available to dependent instructions.
Instruction retirement, where the instruction finally frees up its pipeline resources, is done in pro-
gram order. In-order retirement is implemented by queuing instructions into a FIFO queue called
a reorder buffer (ROB) [115] in program order, and retiring an instruction once it reaches the ROB
head.

2.3.2 Attack Overview

Attack structure. In out-of-order processors, some instructions may execute but later get squashed
and not commit. These bound-to-squash instructions are called transient instructions. As a result,
speculative side-channel attacks is sometimes called transient execution attacks. This thesis uses
these two terms interchangeably. In a transient execution attack, an attacker exploits the side-effects
of transient instructions to learn information it would not be able to learn from a non-transient
correct execution. A typical attack consists of a transient load accessing some secret value, which
is then forwarded to transmitter instruction(s) (or transmitters) that leak the secret over a covert
channel [54, 116]. These steps are collectively referred to as a disclosure gadget [117].
In general, a transmitter is any instruction whose execution creates operand-dependent micro-

architectural resource usage that reveals the operand (even if only partially) [54, 116, 117]. The
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prototypical example is a load instruction, which causes address-dependent changes to the state of
the cache hierarchy by filling and evicting cache lines. As a result, the cache line accessed by the
load can be inferred using techniques such as Flush+Reload [6] or Prime+Probe [1].
Figure 2.2 shows Spectre v1 [18], an example of a transient execution disclosure gadget. It

exploits the misprediction of a bounds-checking branch to perform an out-of-bounds array load
(Line 2), which can read a secret from any memory location. A transmit load then leaks the secret
(Line 3).

1 if (x < array1_size) { // mispredicted branch
2 uint8 s = array1[x]; // access load
3 uint8 y = array2[s * 4096]; // transmit load
4 }

Figure 2.2: Spectre V1.

Security violations. Attacks are categorized by the relationship between the hardware protection
domains of the disclosure gadget and the victim [117]. In a domain-bypass attack, the gadget and
victim are in different domains. An example is Meltdown [19], where a userspace process reads
OS kernel memory. In a cross-domain attack, the gadget resides in the victim’s domain (which
differs from the attacker’s domain, which is from where the attacker monitors the covert channel).
An example is a network server whose code inadvertently contains a Spectre gadget that can be
passed a malicious input [18]. Finally, in an in-domain attack, the attacker circumvents software
sandboxing. For example, an array access in JavaScript (compiled by a browser) is subject to a
bounds check, producing code such as in Figure 2.2. Mispredicting the bounds check allows the
attacker to circumvent the bounds check.

2.3.3 Hardware Defenses to Speculative Side-Channel Attacks

To defend against speculative execution attacks, researchers have proposed hardware-based
schemes [116, 118, 119, 120, 121, 122, 123]. These schemes share a common general approach.
First, they deploy a hardware mechanism that protects the relevant transmitter instructions. This
protection prevents a transmitter from leaking its operands, blocking the side channel. However, it
imposes a performance cost. Later, the protection is lifted when the transmitter’s operands become
safe to reveal. This execution point is called the instruction’s Visibility Point (VP) [118]. When
an instruction reaches the VP depends on the scheme’s threat model, i.e., which types of transient
instructions it considers.
Threat models. A popular but weak threat model is the Spectre model. It only considers transient
instructions caused by incorrect control flow. An instruction reaches its VP when all of its older
control-flow instructions have resolved. Another model is the Futuristic model [118], which we
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rename to the more descriptive name Comprehensive model. This model considers transient in-
structions caused by all types of squashes. An instruction reaches its VP only when it cannot be
squashed anymore, which is most often when it reaches the ROB head. In this thesis, we use the
Comprehensive model.
Protection mechanisms. Most defense schemes target cache and TLB-based side channels. They
typically apply a variety of protection mechanisms to loads. For example, InvisiSpec [118] and
SafeSpec [119] issue speculative loads invisibly. CleanupSpec [124] records the state generated
by speculative loads, to be able to undo it on a squash. Delay-On-Miss (DOM) [120, 121] delays
speculative loads that miss in the L1 cache, but allows L1-hitting speculative loads to execute.
CSF [125] prevents speculative loads from changing visible cache state by inserting stalling fences.
All of these mechanisms introduce performance overhead.
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CHAPTER 3: Co-Location in the Modern Public Cloud

3.1 INTRODUCTION

As discussed in Section 1.1.1 and Section 2.2.3, the first step of side-channel attacks in public
cloud is to ensure that the attacker’s processes are co-located with the target victim’s process on
the same physical host [37] (STEP 1 in Table 2.1). This chapter focuses on how an unprivileged
malicious cloud user can co-locate their processes with a target victim process in a modern public
cloud environment.
Attaining co-location in modern public clouds is challenging for several reasons. First, due to the

widespread adoption of the virtual private cloud (VPC) [126], modern cloud infrastructures have
become resistant to prior network-based co-location attack techniques [37, 38, 39]. Second, with
the rapid expansion of cloud computing and the ever-growing sizes of data centers, the likelihood
of attacker-victim co-location has been reduced.
Adding to these challenges, cloud computing is gradually shifting towards the emerging paradigm

of Function-as-a-Service (FaaS), exemplified by platforms like AWS Lambda [29], Google Cloud
Run [30], and Azure Functions [31]. A detailed introduction to FaaS can be found in Chapter 2.1.
Co-location attack techniques in these FaaS environments are relatively unexplored and present
new challenges for attackers. Unlike conventional virtual machine (VM) environments, where
users can specify the placement of VMs in availability zones and choose hosts with certain CPU
models, FaaS platforms abstract away these operational details and fully manage the FaaS container
placement. Furthermore, due to the dynamic nature of FaaS environments, container instances are
frequently launched and soon terminated to accommodate dynamic workload demands. Such char-
acteristics make achieving co-location in FaaS settings particularly difficult.
In this chapter, we present the first comprehensive study on risks of and techniques for co-

location attacks in modern public FaaS environments. Since public FaaS platforms do not disclose
their instance placement policies, reverse engineering these policies is crucial to understand the
co-location risk and develop efficient co-location attacks.
To study how container instances are scheduled to physical hosts, we first develop two novel

host fingerprinting techniques. We show that, despite the use of sandboxing and virtualization
technologies [70, 127, 128, 129] in the cloud, the attacker can still learn sensitive host information
by directly interacting with the host hardware—specifically, the timestamp counter. Our techniques
are applicable to both non-virtualized Linux containers (e.g., Docker [127]) and lightweight VMs
(e.g., Firecracker [129]), which are the two mainstream containerization technologies used in FaaS
platforms. Armedwith host fingerprints, we propose a newmethod to inexpensively verify instance
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co-location on a large scale. This is essential in vast modern data centers, where the attacker needs
to launch numerous instances to achieve co-location.
Using the host fingerprints and our scalable co-location verification methodology, we perform

a large-scale study on Google Cloud Run [30] to analyze its instance placement strategy. Our in-
vestigation uncovers exploitable instance placement behaviors in Cloud Run. In particular, Cloud
Run appears to employ a load-balancing mechanism that distributes instances of a function to nu-
merous hosts when the function experiences a high demand within a short time window. We then
develop an instance launching strategy that exploits this behavior to deploy attacker instances onto
a significant portion of Cloud Run hosts within a data center—drastically increasing co-location
efficacy and reducing the financial cost of the attack.
We demonstrate the ability of our attack strategy to achieve 100% probability of co-locating the

attacker with at least one victim instance in three major Cloud Run data centers in the US: us-east1,
us-central1, and us-west1. Moreover, our strategy effectively co-locates the attacker with 100% of
victim instances in us-west1, nearly 100% in us-east1, and between 61% and 90% in us-central1,
depending on the victim account. In addition, we observe at least 1702 hosts in the largest data
center, and show that our strategy successfully deploys attacker instances that reside on 904 hosts
at once, with an estimated expense of only 23 USD—showcasing the practicality of co-location
attacks in large modern data centers.
This chapter makes the following contributions:

• We introduce two effective host fingerprinting techniques as a primitive to study the instance
placement policies of modern public FaaS platforms.
•We propose a scalable and inexpensive methodology for instance co-location verification assisted
by host fingerprints.
• We systematically study the instance placement policies of Google Cloud Run and identify be-
haviors exploitable for co-location attacks.
• We devise an efficient attack strategy that achieves high co-location rates with different victim
accounts on Google Cloud Run.

Disclosure to Google. We reported our findings to Google in early August 2023. Google identified
our findings as an abuse risk and assigned the issue to their Trust & Safety team.

Availability. We open sourced our implementations at https://github.com/zzrcxb/EAAO.

3.2 BACKGROUND: TIMEKEEPING IN X86

In recent years, the timestamp counter (TSC) has become a preferable timekeeping option on
x86 platforms, as CPU vendors increasingly support invariant TSC. An invariant TSC is reset to
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zero at boot time and increments at a fixed rate, irrespective of the CPU’s frequency scaling and
power state [130]. Compared to other clock sources, TSC offers greater time resolution and lower
time retrieval cost. TSC can be conveniently accessed using the unprivileged instructions rdtsc
and rdtscp.
To use the TSC as a clock source in Linux, the kernel needs to determine its frequency. Since the

actual TSC frequency usually deviates from the frequency reported by cpuid by a constant value
(which can be up to a fewMHz), the kernel refines the TSC frequency using other hardware clocks
in the system and utilizes the refined frequency for more accurate timekeeping [131]. On multi-
core systems, Linux also verifies TSC synchronization across cores to prevent time anomalies.
Generally, TSC is synchronized among cores across sockets on Intel platforms.

3.3 THREAT MODEL

Recall that a generalizedmicroarchitectural side-channel attack consists of two steps: co-location
and extraction (Section 2.2). In this chapter, we consider an attacker aiming to co-locate with in-
stances of a target victim service on a public FaaS platform (STEP 1). We assume that the victim
service processes sensitive information, such as a login service that performs authentication. Since
the victim service is usually part of a large web application with public interfaces, we assume that
the attacker can either directly or indirectly invoke the victim service through those interfaces. Fi-
nally, we assume that, once co-located with the victim, the attacker can detect when the victim
program is running and exfiltrate the said sensitive information through techniques discussed in
prior work [15, 17, 37, 39, 132].
We assume an unprivileged attacker who is a standard user of a public FaaS platform (e.g., Cloud

Run). We also assume that the FaaS platform is trusted and does not collude with the attacker.
These two assumptions imply that the attacker can only interact with the platform through standard
FaaS interfaces that are available to all platform users, such as deploying custom services and
sending requests to services. Using these interfaces, the attacker can execute arbitrary programs
on the platform inside their containers, and the attacker can launch new container instances through
autoscaling (Section 2.1). Additionally, we assume that the attacker has no knowledge of the exact
host selection policies employed by the platform orchestrator and can only observe their behavior
using black-box methods.
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3.4 HOST FINGERPRINTING IN THE WILD

Public FaaS platforms, such as Cloud Run [30], do not reveal their instance placement policies.
In this section, we propose novel, highly accurate physical host fingerprinting techniques suitable
for both non-virtualized Linux containers (e.g., the GEN 1 environment) and lightweight VMs (e.g.,
the GEN 2 environment). Using our fingerprints, attackers can gain insights into the placement
policy of the cloud platform, allowing them to develop launching strategies that drastically boost
the efficacy of co-location attacks.
As the focus of this chapter is on the GEN 1 environment, we organize this section as follows:

Section 3.4.1 provides an overview of host fingerprinting in GEN 1; Section 3.4.2 discusses two pos-
sible implementations to obtain host fingerprints in GEN 1; Section 3.4.3 proposes a newmethodol-
ogy to verify instance co-location in a scalable manner; Section 3.4.4 evaluates our fingerprinting
for GEN 1 in the wild; and Section 3.4.5 extends the GEN 1 fingerprinting technique to the GEN 2
environment and evaluates its accuracy.

3.4.1 Overview

Recall that, in the GEN 1 environment, gVisor sandboxes user programs and hides the host in-
formation (Section 2.1.2), thereby blocking host fingerprinting through IP addresses or statistics
in the /proc filesystem [37, 39]. However, we find that we can bypass gVisor’s software counter-
measures to learn sensitive host information by directly interacting with the non-virtualized host
hardware.
For example, the attacker can use the unprivileged instruction cpuid to extract information like

the CPU model and cache hierarchy structure, which are essential for many cache-based side-
channel attacks [1, 2, 3, 133]1. Similarly, the attacker can use the unprivileged instructions rdtsc
and rdtscp to read the host’s timestamp counter (TSC). The TSC is reset to 0 on host boot and
increments at a fixed rate non-stop (Section 3.2). Therefore, the attacker can use the value of TSC
to infer the uptime of the host, which in turn can be used to determine its boot time.
Based on this insight, we propose to use the host’s CPU model (𝑚𝑜𝑑𝑒𝑙) and the host’s boot

time in real-world time (𝑇𝑏𝑜𝑜𝑡) to fingerprint a host in the GEN 1 execution environment. The
intuition of using 𝑇𝑏𝑜𝑜𝑡 is that different hosts very likely have different boot times due to system
maintenance, hardware failures, and power management (e.g., powering off the host when the
computation demand is low). As a result, 𝑇𝑏𝑜𝑜𝑡 can accurately differentiate physical hosts. Since
it is trivial to read the CPU model through cpuid, we focus on deriving the host’s 𝑇𝑏𝑜𝑜𝑡.

1Intel introduced the Processor Serial Number (PSN) in the Pentium III processor [134]. The PSN uniquely iden-
tifies an individual processor and can be queried through cpuid. However, the PSN is discontinued in recent Intel
processors due to privacy concerns.
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3.4.2 Deriving the Boot Time from the TSC Value

To derive the host’s boot time 𝑇𝑏𝑜𝑜𝑡, the attacker can read the host’s TSC value (denoted by
𝑡𝑠𝑐) through rdtsc or rdtscp, and simultaneously record the real-world time of this measurement
(denoted by 𝑇𝑤) through a system call. Then, the host’s boot time is calculated as follows:

𝑇𝑏𝑜𝑜𝑡 = 𝑇𝑤 − 𝑡𝑠𝑐/𝑓, (3.4.1)

where 𝑓 is the TSC frequency measured in Hz. Eq. 3.4.1 assumes that the host CPU supports an
invariant TSC (Section 3.2), which holds for all CPUmodels we observed in Cloud Run. However,
even on the same host, the derived 𝑇𝑏𝑜𝑜𝑡 can exhibit small variations across measurements due to
noise. Consequently, we round 𝑇𝑏𝑜𝑜𝑡 to a certain precision 𝑝𝑏𝑜𝑜𝑡 (e.g., 1 s). With the rounded value,
measurements from the same host consistently produce the same fingerprint.
To obtain 𝑓, we propose two methods. Neither method relies on any features from gVisor or

Cloud Run, making them applicable to other Linux container-based environments.

1 Using the reported TSC frequency. In this method, the attacker uses the TSC frequency
reported by cpuid. If cpuid does not report the TSC frequency, which is the case on Cloud Run,
the attacker can use the labeled base frequency found in the model name. Empirically, this base
frequency is equal to the TSC frequency that the clock is supposed to operate on [130]. For example,
CPU model “Intel Xeon CPU @ 2.00GHz” has a base frequency and TSC frequency of 2.00GHz.
We refer to a TSC frequency obtained through either way as the reported TSC frequency.
Unfortunately, the reported TSC frequency is often slightly inaccurate, deviating from the actual

TSC frequency by a constant value [131] (Section 3.2). This inaccuracy can cause the derived
𝑇𝑏𝑜𝑜𝑡 to drift over time, causing fingerprinting false negatives. To understand why, let us denote
the reported TSC frequency as 𝑓𝑟 = 𝑓∗ + 𝜖, where 𝑓∗ is the actual frequency and 𝜖 is the constant
error. Suppose we collect two fingerprints from the same host at two different real-world times 𝑇𝑤1

and 𝑇𝑤2 , with TSC values 𝑡𝑠𝑐1 and 𝑡𝑠𝑐2, respectively, as illustrated in Figure 3.1.

Real-world
Time

Host boots
Measurement 1 

(read 𝑡𝑠𝑐1)

𝑇𝑤1

Measurement 2
(read 𝑡𝑠𝑐2)

𝑇𝑤2

Δ𝑇𝑤

Real-world
Time

D
er

iv
ed

𝑇 𝑏
𝑜
𝑜
𝑡

Figure 3.1: Illustration of drifting in the derived 𝑇𝑏𝑜𝑜𝑡 over time.
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Using Eq. 3.4.1, the 𝑇𝑏𝑜𝑜𝑡 derived from the two measurements differs by

Δ𝑇𝑏𝑜𝑜𝑡 = 𝑇𝑏𝑜𝑜𝑡2 − 𝑇𝑏𝑜𝑜𝑡1 = (𝑇𝑤2 − 𝑡𝑠𝑐2/𝑓𝑟) − (𝑇𝑤1 − 𝑡𝑠𝑐1/𝑓𝑟)
= Δ𝑇𝑤 − Δ𝑡𝑠𝑐/𝑓𝑟
= Δ𝑇𝑤 − Δ𝑇𝑤𝑓∗/𝑓𝑟
= Δ𝑇𝑤𝜖/𝑓𝑟. (3.4.2)

Since both 𝜖 and 𝑓𝑟 are constant, |Δ𝑇𝑏𝑜𝑜𝑡| increases linearly as Δ𝑇𝑤 grows, where Δ𝑇𝑤 is the time
elapsed between two measurements. If Δ𝑇𝑤 is sufficiently large, |Δ𝑇𝑏𝑜𝑜𝑡| will exceed the rounding
precision 𝑝𝑏𝑜𝑜𝑡, causing the rounded 𝑇𝑏𝑜𝑜𝑡 to differ and leading to a false negative. As a result, we
say that the fingerprint exhibits an “expiration time” that depends on the frequency error 𝜖.
2 Using measured TSC frequency. An alternative approach is to measure the actual TSC fre-
quency. This approach mitigates the drifting problem. Similar to how Linux refines the TSC
frequency at boot time [131], the attacker can read the TSC twice, waiting a real-world time Δ𝑇𝑤
in-between. The TSC frequency can then be calculated as Δ𝑡𝑠𝑐/Δ𝑇𝑤. However, unlike the Linux
kernel, the attacker cannot access other hardware clocks to obtain an accurateΔ𝑇𝑤 in the sandboxed
container, as accessing those clocks requires privileged instructions. Consequently, the attacker can
only rely on system calls to obtain Δ𝑇𝑤, which may be subject to noise caused by interrupts and
context switches.
We tested this approach on Cloud Run with Δ𝑇𝑤 ≈ 100ms and found that the measured TSC

frequency exhibits standard deviations of less than 100Hz after 10 repetitions on most Cloud Run
hosts. However, on a small yet significant portion of the evaluated hosts, we observed large stan-
dard deviations ranging from 10 kHz to a few MHz, even after 100 repetitions with an increased
Δ𝑇𝑤. As a result, two co-located instances on such problematic hosts can measure the TSC fre-
quency as two significantly different values—and the 𝑇𝑏𝑜𝑜𝑡 derived by the two instances will not
match, leading to declaring that the two instances are on two different hosts (i.e., a false negative).
Notably, during the experiment of validating fingerprinting accuracy in Section 3.4.4, we found

that 58 out of the 586 evaluated hosts (or about 10%) exhibited such problematic behavior. These
affected hosts were largely the same across measurements conducted at different times. Therefore,
in the rest of the chapter, we obtain 𝑓 using the first method (i.e., the reported TSC frequency) and,
in Section 3.4.4, evaluate the expiration time of fingerprints due to the inaccurate 𝑓.

3.4.3 Verifying Instance Co-location in a Scalable Manner

In Section 3.4.4, wewill evaluate the accuracy of our fingerprints by launchingmultiple instances
and measuring whether instances that obtain the same fingerprints are indeed co-located, and vice
versa. To do that, in this section, we first develop a new methodology to generate the ground truth
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of instance co-location in a scalable and inexpensive manner.
To understand our methodology, consider first the conventional approach to test instance co-

location using a covert channel. The process involves picking two container instances at a time
and instructing both of them to simultaneously put high pressure on a shared resource in the host,
such as the random number generator (RNG) [90] or memory bus [89]. If both instances observe
resource contention above a certain threshold, then we conclude that they are co-located. The
drawback of this naive pairwise approach is that it has a time complexity of 𝑂(𝑁2), where 𝑁 is the
total number of instances under test.
We propose a new approach to test 𝑛 instances at once, where 𝑛 > 2. Specifically, consider a

covert-channel test primitive for 𝑛 instances
𝐶𝑇𝑒𝑠𝑡(𝑖1, 𝑖2, ..., 𝑖𝑛) → {𝑏1, 𝑏2, ..., 𝑏𝑛},

that takes as input a list of 𝑛 container instances under test ({𝑖1, 𝑖2, ..., 𝑖𝑛}) and instructs all 𝑛 instances
to simultaneously put pressure on the shared resource. This primitive returns a list of boolean
values ({𝑏1, 𝑏2, ..., 𝑏𝑛}) that indicate whether each corresponding instance observes a contention
level above a certain threshold. We assume that it only takes two co-located instances to generate
enough contention to go over the contention threshold. In this case, if an instance 𝐴 does not see
contention over the threshold (i.e., it tests negative), then we can conclude that 𝐴 is not co-located
with any of the other 𝑛−1 instances. Furthermore, if all 𝑛 instances test negative, then, in a single
test, we conclude that no instance is co-located with any other instance.
If an instance 𝐴 tests positive, we may know which instances are co-located with 𝐴, depending

on the total number of positive instances in the test. To see why, consider as an example a test with
four instances {𝐴, 𝑖1, 𝑖2, 𝑖3}. If three instances, including 𝐴, are positive, e.g., 𝐶𝑇𝑒𝑠𝑡(𝐴, 𝑖1, 𝑖2, 𝑖3) →
{𝑇, 𝑇, 𝑇, 𝐹}, then we can conclude that {𝐴, 𝑖1, 𝑖2} must be co-located, as it takes at least two co-
located instances to test positive. However, if all four instances are positive, we cannot conclude
that they are co-located on the same host; it is possible that these four instances reside on two hosts,
e.g., {𝐴, 𝑖1} are co-located and {𝑖2, 𝑖3} are co-located. As a result, we can only test 𝑛 ≤ 3 instances
at once without the confusion of whether they share one or multiple hosts.
We can further improve the test efficiency by (i) either raising the contention level threshold

for an instance to test positive, or (ii) reducing the amount of pressure each instance generates.
For example, if each instance generates a contention of 1 unit and we set the threshold to 𝑚 units
(𝑚 > 2), then it takes at least𝑚 co-located instances for each one of the𝑚 instances to test positive.
As a result, if𝑚,𝑚+1, ..., or 2𝑚−1 instances test positive, we verify that these positive instances
share the same host in a single test.

Our approach. Based on the above discussion, our approach hierarchically generates the ground
truth for fingerprinting validation. The approach is illustrated in Figure 3.2, where each symbol
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represents a container instance, and truly co-located instances have the same shape. Assume that
we have nine instances and that, using our fingerprinting method, conclude that there are three
different fingerprints (𝔽1, 𝔽2, and 𝔽3), and three instances per fingerprint. To validate our findings,
we first group the instances based on their fingerprints (dashed lines in 1⃝). If our fingerprints
have a high accuracy, instances in the same group are likely to be indeed co-located, while those
in different groups are likely not.

𝔽1 {     ,      ,      }

{     ,      } {     }

{     ,      } {     }

{     ,      ,      }

{     ,      }

{     ,      }

{     ,      }

②

③
𝔽2

𝔽3

②

②

①
x

x x

x x

Figure 3.2: Overview of our fingerprint validation methodology. Each symbol represents a con-
tainer instance. Instances with the same shape are truly co-located.

Next, we use an appropriate𝑚 to test likely co-located instances from each group at once. In the
example, we use𝑚 = 2 ( 2⃝). After this test, if a group had any false positive (e.g., the group with
𝔽2 and 𝔽3 in Figure 3.2), it is divided into several clusters, where each cluster includes instances
that are verified to be co-located. Otherwise, the entire group remains intact and is considered as a
single cluster (e.g., the group with 𝔽1 in Figure 3.2). Step 2⃝ has identified all the false positives. In
the best-case scenario where no false positives existed, each fingerprint is verified with one single
test. In this case, the total number of tests is the number of fingerprints under validation, which is
the number of hosts—except for potential false negatives, as we will consider next.
Note that Step 2⃝ tests each fingerprint group in sequence, to avoid interference. We can further

reduce the execution time of Step 2⃝ by concurrently verifying fingerprints that are guaranteed
to belong to different hosts, such as those with different CPU models. As will be discussed in
Section 3.4.5, the GEN 2 fingerprint makes crucial use of this optimization.
After this, we want to find the false negatives—i.e., two instances with different fingerprints that

are actually co-located. Since instances from the same cluster are verified to be co-located, we pick
one instance from each cluster to represent the host they reside on. In Figure 3.2, we pick the five
instances that are decorated with an ×. These selected instances are unlikely co-located. Hence,
we set 𝑚 = 2 and test these selected instances all at once ( 3⃝). Those that test positive are false
negatives. In our example, they are the two stars. Then, we further refine our tests on the positive
instances to identify co-located instances and merge the clusters they represent. In the example, we
end up with four clusters, as the figure shows. In the best-case scenario where no false negatives
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existed, Step 3⃝ only requires one test.
If an initial group in Step 1⃝ is large, we split it into several smaller groups with no more than

2𝑚 − 1 instances each, where 𝑚 is small (in our implementation, we use 𝑚 = 2). Then, we test
each group individually. If each small group is verified to be co-located, we pick one instance from
each group to hierarchically test their co-location. If some tests in this process turn out negative,
for simplicity, we fall back to pairwise tests within the initial large group.
In summary, our approach’s best-case time complexity is 𝑂(𝑀), where𝑀 is the number of hosts

occupied by the instances under validation. This best-case scenario is common if fingerprints are
accurate, which we will see is true for our GEN 1 fingerprints in Section 3.4.4.

Comparison with conventional pairwise covert-channel testing [15, 37, 39]. The main goal of
our host fingerprinting technique is to improve the attacker’s ability to achieve co-location. Re-
markably, while conventional pairwise covert-channel testing only confirms co-location at a par-
ticular moment, our host fingerprinting allows an attacker to track a host over time. Our technique
thus enables the attacker to comprehensively study how container instances are placed onto specific
hosts at different times, which can be leveraged to develop efficient instance launching strategies
to significantly increase the probability of co-location with a target victim (Section 3.5). We will
see that, if an attacker simply launches instances without insight into the placement policy, the
rate of co-location is often zero, whereas our technique attains a co-location rate of 61%–90% in
us-central1 and near 100% in us-east1 and us-west1 with minimal cost.
Our co-location verificationmethod is both faster and financially cheaper than conventional pair-

wise covert-channel testing. In Section 3.4.4, we verify the co-location of 800 container instances.
Using pairwise testing, this verification process requires 319, 600 pairwise tests. Moreover, these
tests are serialized to avoid interference. Assuming an optimistic execution time of 100ms per
test, finishing these pairwise tests would take 8.9 hours. In contrast, we find that our approach only
takes about 1 to 2 minutes to validate all 800 instances.
To estimate the financial cost of performing these tests on Cloud Run, we use the Cloud Run

pricing model [135]. For a standard instance requesting 1 vCPU and 0.5GB memory, the cost is
estimated using the formula 𝑁 × 𝑡× (𝑅𝑐𝑝𝑢+0.5𝑅𝑚𝑒𝑚). In this equation, 𝑁 is the number of active
instances, 𝑡 is the active time of these instances in seconds, 𝑅𝑐𝑝𝑢 is the CPU time cost per vCPU-
second in USD, and 𝑅𝑚𝑒𝑚 is the memory cost per GB-second in USD. At the time of this writing,
𝑅𝑐𝑝𝑢 = ¢0.0024/vCPU-second and 𝑅𝑚𝑒𝑚 = ¢0.00025/GB-second in us-east1, us-central1, and
us-west1.
Based on this pricing model and rates, performing the pairwise tests would cost about 645

USD. This cost would be even higher if we used the pairwise test method discussed by Varadara-
jan et al. [39], which takes several seconds to complete one pairwise test. In contrast, our approach
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costs about 1 to 3 USD. Importantly, the time and financial cost of pairwise testing grows quadrat-
ically with the number of instances being verified for co-location.
Note that prior work [15, 39] speeds up pairwise testing by filtering out instances that do not

co-locate with any other instance. İnci et al. [15] call this filtering step Single Instance Elimination
(SIE). During SIE, the attacker tests all instances simultaneously and removes instances that test
negative. However, SIE is ineffective in a FaaS environment. This is because the FaaS orches-
trator tends to place multiple instances onto the same host, as will be discussed in Section 3.5.2.
Consequently, every instance is co-located with some other instances and SIE will fail to remove
any instance.

3.4.4 Evaluating Fingerprinting

Accuracy Results. We evaluate fingerprint accuracy at a large scale on the public Cloud Run
platform in three different data centers: us-east1, us-central1, and us-west1. In each data center,
we deploy a service and launch 800 concurrently-running container instances. Although a user
can launch up to 1000 container instances from the same service on Cloud Run, new instance
creation slows down as the instance count approaches 1000, escalating the financial cost. As a
result, we launch 800 instances. We accomplish this by configuring each instance to just handle
one connection and then establishing 800WebSocket connections to these instances.
For each instance, we collect its host CPU model name, the TSC value, and the real-world time

of the measurement. We also record the true co-locations of the instances (i.e., the ground truth)
using the scalable validation methodology discussed in Section 3.4.3. Our implementation of the
methodology utilizes a low-noise covert channel based on contention on the random number gen-
erator (RNG) [90]. Because the RNG is rarely used [90], we find that the likelihood of observing
RNG contention due to background activities is less than 1%. We require the presence of contention
in at least 30 measurements out of 60 to confirm co-location. Hence, the risk of false positives is
extremely small. Finally, we evaluate the fingerprint accuracy while varying the rounding preci-
sion of 𝑇𝑏𝑜𝑜𝑡 (i.e., 𝑝𝑏𝑜𝑜𝑡). We repeat our experiments 5 times at different days and different times
of day, totaling 15 measurements across three data centers.
To measure fingerprint accuracy, we examine all unique pairs of instances. For each pair of

matching fingerprints, if the instances are indeed co-located, it is a true positive; otherwise, it is a
false positive. For each pair of mismatching fingerprints, if the instances are not co-located, it is a
true negative; otherwise, it is a false negative. We call the number of true and false positives 𝑇𝑃
and 𝐹𝑃, respectively, and the number of true and false negatives 𝑇𝑁 and 𝐹𝑁, respectively. Then,
we compute the Fowlkes-Mallows index (FMI) [136], which is a common metric of clustering
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performance. FMI is calculated by

𝐹𝑀𝐼 = √𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 ⋅ 𝑇𝑃
𝑇𝑃 + 𝐹𝑁 .

FMI ranges from 0 to 1, with 1 indicating that the fingerprints are perfect (i.e., there are no false
positives or false negatives).
Figure 3.3 shows the accuracy results averaged across all measurements and the three data centers

under evaluation. The top plot of Figure 3.3 shows the FMI for different values of 𝑝𝑏𝑜𝑜𝑡; the bottom
plot shows the recall and the precision for the same values of 𝑝𝑏𝑜𝑜𝑡. In the figure, 𝑝𝑏𝑜𝑜𝑡 values are
measured in seconds. The error bars represent the standard deviations. FromFigure 3.3, we observe
that when 𝑝𝑏𝑜𝑜𝑡 is small and, therefore, the rounded 𝑇𝑏𝑜𝑜𝑡 has many significant digits (left end of
Figure 3.3), fingerprints suffer from low recall (i.e., many false negatives) and have a low FMI.
The reason is that a small 𝑝𝑏𝑜𝑜𝑡 cannot overcome the noise in measuring 𝑇𝑏𝑜𝑜𝑡. Hence, the same
host gets different fingerprints in different co-located instances. On the other hand, if 𝑝𝑏𝑜𝑜𝑡 is very
large and, therefore, the rounded 𝑇𝑏𝑜𝑜𝑡 has few significant digits (right end of Figure 3.3), different
hosts with similar boot time are rounded to the same value. The result is many false positives,
which reduce the precision and the FMI.
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Figure 3.3: Average fingerprint accuracy with respect to the rounding precision of 𝑇𝑏𝑜𝑜𝑡 (i.e.,
𝑝𝑏𝑜𝑜𝑡). Error bars show standard deviations. Our GEN 1 fingerprints show near-perfect accura-
cies with 100ms ≤ 𝑝𝑏𝑜𝑜𝑡 ≤ 1 s.

The sweet spot for 𝑝𝑏𝑜𝑜𝑡 ranges from 100ms to 1 s, where we reach an average FMI of 0.9999,
which is nearly perfect. Since using a large 𝑝𝑏𝑜𝑜𝑡 can extend the expiration time of fingerprints,
we use 𝑝𝑏𝑜𝑜𝑡 = 1 s by default. With this value, our fingerprints are highly accurate: among the
15 experiments conducted across three data centers, we find that 14 generate perfect fingerprints,
while one generates nearly perfect fingerprints.

Fingerprint Expiration Time Results. Our fingerprints are subject to drifting because we use the
reported TSC frequency, which is inaccurate (Section 3.4.2). However, having long-lived finger-
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prints is crucial for the attacker to track hosts and understand instance placement behavior across
many measurements over the time. Hence, in this subsection, we evaluate the expiration time of
GEN 1 fingerprints.
To observe how the 𝑇𝑏𝑜𝑜𝑡 of a host drifts over the time, we launch a group of 50 long-running

container instances and continuously record their hosts’ fingerprints every hour for one week. Note
that these instances can still be terminated and restarted on a different host over the course of our
measurement. When this happens, we conservatively assume that the restarted instance runs on a
different host. Consequently, most hosts have a fingerprint history shorter than a week. We filtered
out fingerprint histories that are shorter than 24 hours.
We conducted our experiment in the us-east1, us-central1, and us-west1 data centers. After

filtering, we obtained 66, 67, and 79 fingerprint histories in each data center, respectively. Since we
hypothesize that 𝑇𝑏𝑜𝑜𝑡 drifts linearly in Eq. 3.4.2, we use linear regression to fit 𝑇𝑏𝑜𝑜𝑡 as a function
of real-world time for each fingerprint history and examine the r-value of the linear regression. An
r-value with an absolute value close to 1 corresponds to a strong linear correlation [137]. We found
that the minimum absolute r-value across all histories is 0.9997, suggesting that 𝑇𝑏𝑜𝑜𝑡 indeed drifts
linearly.
Based on the𝑇𝑏𝑜𝑜𝑡 of a fingerprint and the slope of its drifting obtained from the linear regression,

we can use linear interpolation to accurately estimate the fingerprint expiration time. The expiration
time is the amount of time it takes for 𝑇𝑏𝑜𝑜𝑡 to drift across a rounding boundary and result in a
different rounded value. Figure 3.4 shows the CDF of the estimated expiration time of fingerprints
in each of the three data centers. From the plot, it is clear that most fingerprints can last a few
days before they expire. The average estimated time for 10% of the fingerprints to expire is about
2 days.
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Figure 3.4: CDF of the estimated fingerprint expiration time. Most GEN 1 fingerprints take many
days to expire.
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3.4.5 Host Fingerprinting in the GEN 2 Environment

Our fingerprinting technique for GEN 1 is not directly applicable to the GEN 2 environment
due to a hardware virtualization feature known as TSC offsetting [130]. With TSC offsetting, the
hypervisor can configure the hardware to add an offset to the host TSC when it is read by the guest
VM. Typically, when the hypervisor boots a guest VM, it saves the current value of the host TSC
(call it 𝑡𝑠𝑐0). Then, when the guest VM asks for a TSC value, the host returns the current TSC
value minus 𝑡𝑠𝑐0. This creates the illusion to the guest VM that the TSC was zero when the guest
VM booted. Therefore, using Eq. 3.4.1, one can only derive the boot time of the guest VM instead
of the host’s.
To circumvent this challenge, we point out that, although the TSC value read by the guest VM

has an unknown offset, the guest TSC still increments at the same rate as the host’s. As a result, the
guest VM can observe the host’s actual TSC frequency, which deviates from the reported frequency
and is likely to be unique among hosts. Therefore, we propose to use the actual host TSC frequency
to fingerprint a host in the GEN 2 execution environment.
Surprisingly, obtaining the actual host TSC frequency is easier in the VM-based GEN 2 envi-

ronment than in the Linux container-based GEN 1 environment. This is despite the fact that VMs
typically offer good isolation between the guest and host. In the GEN 2 environment, KVM exports
the refined host TSC frequency to the guest VM for timekeeping. Since the attacker program has
the root privilege within the guest VM, it can simply read the refined frequency from the guest
kernel. However, this approach cannot be used to obtain the refined host TSC frequency in the
GEN 1 environment and use it as 𝑓 in Eq. 3.4.1, as the sandboxed Linux container can only interact
with gVisor.
Using the same setup for validating GEN 1 fingerprints, we evaluate the accuracy of GEN 2

fingerprints in us-east1, us-central1, and us-west1. Our evaluation results show that the GEN 2
fingerprint is less accurate than theGEN 1 one, due to its low precision (i.e., its many false positives).
Averaged across all measurements in the three data centers, the GEN 2 fingerprint has an FMI of
0.66, and a precision of 0.48. The reason for the low precision is that Linux only refines the TSC
frequency to a precision of 1 kHz, causingmultiple hosts to share the same refined frequency. In our
experiments across three data centers, we find that, on average, 2.0 hosts have the same fingerprint.
Although the GEN 2 fingerprint has relatively low precision, it cannot produce false negatives.

This is because the host TSC frequency is refined only once at host boot time, which means that
co-located instances must have the same host TSC frequency. Because GEN 2 fingerprints cannot
have false negatives, when we use the covert-channel approach of Figure 3.2 to verify fingerprints,
we can perform the tests in Step 2⃝ in parallel without worrying about interference between tests.
Also, we can skip Step 3⃝, which finds false negatives. Consequently, even if the GEN 2 fingerprint
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is less accurate, we can still efficiently generate the co-location ground truth for numerous container
instances.

3.5 CLOUD RUN ORCHESTRATOR AND CO-LOCATION

Leveraging our host fingerprinting and co-location verification techniques proposed in Sec-
tion 3.4, we can accurately identify physical hosts within a data center and verify instance co-
location inexpensively. In Section 3.5.1, we employ these two techniques to systematically study
Cloud Run’s instance placement policy, uncovering exploitable behaviors. In Section 3.5.2, we
propose adversarial instance launching strategies that exploit these uncovered behaviors, along
with an evaluation of their efficacy and financial cost.
We set up our investigation using three standard Google Cloud accounts: ACCOUNT 1, AC-

COUNT 2, and ACCOUNT 3. ACCOUNT 1 is designated as the attacker account, while ACCOUNT 2
and ACCOUNT 3 serve as victim accounts. Following our threat model of Section 3.3, we assume
that once attacker and victim are co-located, the attacker can detect victim program execution and
exfiltrate sensitive information using prior techniques [3, 15, 37, 39, 132].
When we rely on fingerprints to identify hosts without verifying them using a covert channel, we

refer to these hosts as the apparent hosts. As GEN 1 fingerprints are nearly perfect and long-lived
(Sections 3.4.4 and 3.4.4), apparent hosts identified by GEN 1 fingerprints should closely match real
physical hosts. Lastly, our primary focus is on the GEN 1 environment, unless specified otherwise.

3.5.1 Understanding the Instance Placement Policy

We perform a set of experiments to study the instance placement policy of Cloud Run. Through
these experiments, we seek to answer the following questions about a user launching numerous
container instances: (i) How are the instances distributed across hosts and managed by Cloud Run
(Experiment 1); (ii) Does the orchestrator exhibit a consistent behavior across launches (Experi-
ment 2); and (iii) What are the major factors that affect the orchestrator’s behavior (Experiments 3
and 4). In the remainder of this subsection, we primarily focus on the GEN 1 environment in the
us-east1 data center. We will discuss the different execution environments and data centers at the
end of this subsection.

Experiment 1: Instance distribution. In this experiment, we launch 800 instances of the same
service, and record the set of hosts they are placed onto (i.e., their host footprint). We use the covert-
channel approach to generate the co-location ground truth. We observe that these 800 instances are
placed onto 75 hosts. Moreover, we see that the instance distribution across the hosts used is close
to uniform, with the majority of hosts running 10 or 11 instances. This behavior is different from
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Figure 3.5: Number of idle instances after disconnecting from 800 instances, as measured in us-
east1. Practically all instances are terminated in 12 minutes after disconnecting.

that of a VM environment (e.g., AWS EC2 [138]), where it is observed that instances from the
same account do not share a host [37, 38].

Observation 1. Container instances of the same service share hosts, and instance distribution
across the hosts used is close to uniform.

Next, we disconnect from these 800 instances, leaving them in an idle state, and observe when
they are terminated by the orchestrator (Section 2.1). To record the termination time, we capture
the SIGTERM signal sent by the orchestrator before it terminates an instance [64]. Upon capturing
SIGTERM, the container reports the current time to a separate server and then terminates. Figure 3.5
shows the number of idle instances as a function of time since disconnecting. From the plot, we
can see that these idle instances are preserved in the first minute. After that, the orchestrator starts
to gradually terminate idle instances. After about 12 minutes, almost every instance is terminated.
This behavior matches Cloud Run’s documentation [64], which states that idle instances are pre-
served for at most 15 minutes.

Observation 2. Cloud Run gradually terminates idle instances over an approximate period of 12
minutes.

Experiment 2: Behavior across launches. We study if this scheduling behavior changes across
launches. In this experiment, we repeat six times the launch of 800 instances of the same service,
and compare the host footprint of each launch. After each launch, we immediately disconnect from
the 800 instances, putting them into an idle state. Then, we wait for 45 minutes before the next
launch to make sure that all the old instances are terminated and the service enters a “cold” state.
This cold state will be discussed in Experiment 4.
Upon analyzing the experiment results, we observe that the instance distribution remains consis-

tent across launches. We then examine whether instances from different launches share any hosts.
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Since the old instances from a previous launch are terminated before the next launch, it is impos-
sible to use a covert channel to verify co-location of instances across launches. We rely solely on
fingerprints to identify hosts in this experiment, thus reporting the apparent hosts.
Figure 3.6 shows the number of apparent hosts in each launch (identified by the Launch ID). It

also shows the cumulative number of apparent hosts since the first launch. We observe that each
launch occupies a similar number of apparent hosts. Moreover, the growth of the cumulative num-
ber of apparent hosts is minimal, suggesting that the apparent host footprints are highly overlapped
across launches. This behavior can be caused by a data locality optimization, as the orchestrator
may prefer hosts that already have the container image from previous launches.
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Figure 3.6: Number of apparent hosts occupied by 800 instances of the same service, as measured
in us-east1. The footprints of apparent hosts are highly overlapped across launches.

To test the hypothesis of the data locality optimization, we repeat this experiment using a different
service in each launch. These services are owned by the same account. Before the experiment, we
rebuild the container images of the services that will be invoked, to ensure that the images of the
services are not cached in any host. Under this configuration, we still observe a pattern that closely
resembles Figure 3.6.
These experiment results suggest that the orchestrator tends to place instances from the same

account onto a specific set of hosts. This behavior can be explained by affinity scheduling (Sec-
tion 2.1). Affinity scheduling aims to reduce communication overhead by co-locating instances
that frequently interact with each other, which is a likely scenario for services originating from the
same account.

Observation 3. Cloud Run exhibits a consistent behavior across launches. It prefers a specific
set of hosts for container instances owned by the same account. We refer to these preferred hosts
as the base hosts.

Experiment 3: Different accounts. In this experiment, we modify Experiment 2 slightly: the
services used in launch 1 and 2 are owned by ACCOUNT 1, the services used in launch 3 and 4 are
owned byACCOUNT 2, and the services used in launch 5 and 6 are owned byACCOUNT 3. Figure 3.7
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illustrates the results in a manner similar to Figure 3.6. We observe that the cumulative number
of apparent hosts establish a step pattern. When a launch uses a service owned by an account
different from the accounts in previous launches, we see a large growth in the cumulative number
of apparent hosts; otherwise, the growth is minimal. This observation suggests that the orchestrator
uses different base hosts for different accounts.
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Figure 3.7: Number of apparent hosts occupied by 800 instances from three different accounts, as
measured in us-east1. The numbers in parenthesis are the account IDs.

Observation 4. The Cloud Run orchestrator uses different base hosts for different accounts.

Experiment 4: Short launch interval. In this experiment, we repeat Experiment 2 with a short
time interval between launches of 10 minutes. Under this configuration, we see an interesting
orchestrator behavior, as illustrated in Figure 3.8. Unlike Figure 3.6 fromExperiment 2, we observe
that both the number of apparent hosts and the cumulative number of apparent hosts drastically
increase after each of the first three launches. Moreover, the difference between the two curves is
small. These results suggest that the orchestrator places instances to both the hosts used in previous
launches and the new hosts. As a result, after six launches, we have a host footprint of 264 apparent
hosts, which is far higher than the number of base hosts.
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Figure 3.8: Experiment 2 repeated with a time interval between launches of 10 minutes, as mea-
sured in us-east1. We observe drastic increases in both the number of apparent hosts and cumulative
number of apparent hosts.

To further investigate this behavior, we repeat this experiment with different launch intervals.
We observe that this behavior only occurs with an interval smaller than 30 minutes. Furthermore,
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when the interval is too short, the number of new hosts is small. For example, with the 10-minute
interval shown in Figure 3.8, we observe 177 more apparent hosts after launch 6 than after launch
1. However, with a 2-minute interval, we observe only 12more apparent hosts. We also repeat the
experiment with a different service used in each launch, but we do not observe this behavior.
Based on the aforementioned observations, we hypothesize that this behavior is induced by a

load-balancing mechanism of Cloud Run. The mechanism considers the usage of the same service
within approximately the past 30 minutes. If the service exhibits a high demand (i.e., repeatedly
running 800 concurrent instances in our case), then the orchestrator will attempt to place some of
the instances of the same service onto hosts that are not base hosts. As a result, it reduces the load
on the base hosts. We refer to these extra hosts that are used as helper hosts. After a certain number
of repeated launches, this behavior saturates.

Observation 5. For a service that has a high demand within less than 30 minutes, Cloud Run
appears to use a load balancer that places instances of the service onto hosts that are not base
hosts (i.e., helper hosts).

Under this hypothesis, in the first launch, since there is no usage history of the service in the
past 30 minutes, instances are placed onto the base hosts. As we wait for some time before the
next launch, some of the idle instances are terminated. Therefore, in the next launch, the orchestra-
tor has to create new instances to compensate for the terminated ones. Since the previous launch
has primed the service into a high-demand state, the orchestrator starts to place the newly-created
instances on the helper hosts to relieve pressure on the base hosts. This cycle repeats for a few iter-
ations. When the wait interval between launches is small, the number of terminated idle instances
before the next launch is also small. Consequently, the orchestrator creates fewer new instances,
thereby occupying fewer helper hosts.
We consistently observe this behavior when repeating the experiment at different times of the day

or using a different service in the experiment. We also observe that different services use different
sets of helper hosts; these sets are not mutually exclusive and do overlap. We demonstrate this
fact by repeating Experiment 4 for six episodes; in each episode, we use a different service that is
launched six times with 800 instances every time. In each episode of Experiment 4, we measure the
helper host footprint by computing the difference between the host footprint after the sixth launch
and after the first launch.
Figure 3.9 shows the results of the experiment. It shows the number of apparent helper hosts

and the cumulative footprint of apparent helper hosts after each of the episodes. We see that the
cumulative footprint of apparent helper hosts expands after each episode. This expansion suggests
that each episode uses new helper hosts not seen in previous episodes. The increase in the cumu-
lative footprint of helper hosts after a single episode is less than the number of helper hosts in that
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episode, indicating overlaps in helper hosts across different services. As will be discussed later,
an attacker can exploit this behavior by repeatedly launching instances of multiple services and
therefore obtaining residence on a substantial portion of Cloud Run hosts within a data center.
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Figure 3.9: Experiment 4 repeated in six episodes, with a different service used per episode, as
measured in us-east1. We see growth in the cumulative helper host footprint after each episode.

Observation 6. Different Cloud Run services use different but overlapping sets of helper hosts.

Other factors. We investigate other factors that influence the orchestrator’s behavior. We report
four findings. First, we observe similar placement behavior when launching on different dates and
at different times of day. Second, container instances with different resource specifications (such
as CPU and memory) share the same base hosts. Third, all nine Cloud Run data centers in the
US exhibit similar placement behavior except for us-central1, where instance placement is more
dynamic. In us-central1, many instances are placed onto different hosts across launches, even if
we launch from a cold service in each launch. Fourth, the GEN 2 execution environment shows
similar placement behavior, and GEN 2 instances can share hosts with GEN 1 instances.

Implications. The existence of base hosts is a double-edged sword for the attacker. On the one
hand, it reduces the uncertainty on where the victim instances are likely to reside, making co-
locationwith the victim easier. On the other hand, base hosts limit the set of hosts where the attacker
can reside and, therefore, the set of hosts that the attacker can explore. As a result, naively launching
attacker instances has a low chance of co-locating with the victim (Section 3.5.2), as different
accounts often use different base hosts. In practice, the load-balancing behavior of Cloud Run helps
the attacker to overcome this challenge. For example, the attacker can prime their services into a
high-demand state through repeated launches, which help spread attacker instances onto many
helper hosts. This strategy drastically improves the efficacy of co-location attacks (Section 3.5.2).
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3.5.2 Co-location with Victims

In this subsection, we evaluate two instance launching strategies for co-location with victims.
Our primary metric is the victim instance coverage, which is the percentage of victim instances
that are co-located with the attacker. Then, we report the financial cost of the attack, the estimated
size of the Cloud Run data centers, and the transferability of our results to the GEN 2 environment.
We conclude with a discussion on potential optimizations that can enhance attack efficacy.

Evaluation setup. For this evaluation, ACCOUNT 1 is designated as the attacker, while ACCOUNT 2
and ACCOUNT 3 serve as the victims. We conduct the evaluation across three data centers: us-
east1, us-central1, and us-west1. For each combination of data center and victim account, we
repeat the measurement three times on different days and at different times of day. Co-location
between attacker and victim instances is verified using the covert-channel method described in
Section 3.4.3.
In each experiment, we vary the number of victim instances. As the default configuration for

Cloud Run services allows a maximum of 100 instances, we assess configurations with 20, 50, 100,
and 200 victim instances, setting the 100-instance configuration as the default. Prior work [139]
suggests that orchestrators might prefer co-locating instances with similar resource specifications
(such as CPU and memory) in the same nodes. Accordingly, we vary the size of the victim in-
stances, using the sizes outlined in Table 3.1. We choose SMALL as the default victim size since it is
the standard configuration for Cloud Run services. We also fix the attacker instance size to SMALL.

Table 3.1: Various container sizes used in our evaluation. Note that we define these four container
sizes for the purpose of this study; a user can use a size different than these four.

Size # of CPUs Memory
PICO 0.25 256MB

SMALL (Default) 1 512MB
MEDIUM 2 1GB
LARGE 4 4GB

Strategy 1: Naive instance launching. Here, the attacker simply launches numerous instances
from services in a cold state. This strategy represents a naive attacker who has no insight into the
Cloud Run’s instance placement behavior. In our experiment, this naive strategy launches 4, 800
instances from six services.
Despite the large number of attacker instances, we observe zero co-location with ACCOUNT 2

in us-east1 and us-central1, or with ACCOUNT 3 in us-east1 and us-west1. We see high average
victim instance coverage only with ACCOUNT 2 in us-west1 (100.0%) and with ACCOUNT 3 in us-
central1 (81.0%), as the base hosts of the attacker and victim happen to be highly overlapped in the
corresponding data centers. Changing the number of victim instances or their size does not yield
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(a) Varying the number of victim instances (20, 50, 100, and 200). The victim instance size is fixed to SMALL.
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(b) Varying the victim instance size (Pico, Small, Medium, and Large). The number of victim instances is
fixed to 100.

Figure 3.10: Average victim instance coverage across three measurements. Error bars represent
standard deviations. “Acc.” is an abbreviation for “Account”. Our optimized launching strategy
can achieve a high victim coverage in different evaluated data centers.

significant variations. This is consistent with our observation that services from the same account
share the same base hosts, even when they have different resource specifications (Section 3.5.1).
Overall, the data indicates that a naive launching strategy without any insight into Cloud Run’s
placement behaviors is often ineffective.

Strategy 2: Optimized instance launching. This strategy exploits the load-balancing behavior of
Cloud Run. The high-level idea is to prime the attacker service into a high-demand state by repeat-
edly launching many instances with an appropriate time interval. This action enables the attacker
to deploy instances onto numerous helper hosts. Given our observation that different services use
different but overlapping sets of helper hosts (Section 3.5.1), attacker instances can reside on more
helper hosts if they utilize multiple services. In our experiment, the attacker deploys six services.
Similar to Experiment 4 in Section 3.5.1, the attacker repeatedly launches 800 instances of each
service at a 10-minute interval, killing the instances after each launch except after the last one.
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Figure 3.10 shows the average victim instance coverage using the optimized launching strategy,
with the error bars indicating standard deviations. In Figure 3.10a, we vary the number of victim
instances while fixing the victim size to SMALL. Conversely, in Figure 3.10b, we vary the victim
size while keeping the number of victim instances set to 100.
Figure 3.10a illustrates that our optimized instance launching strategy is highly effective. With

the default configuration of 100 SMALL victim instances, we observe high victim instance cover-
age. From left to right, we see, in us-east1, victim instance coverages of 97.7% and 99.7% with
ACCOUNT 2 and ACCOUNT 3, respectively. In us-central1, we see lower coverages of 61.3% with
ACCOUNT 2 and 90.0% with ACCOUNT 3. Finally, in us-west1, we see 100.0% coverage with both
ACCOUNT 2 and ACCOUNT 3. One potential reason for the reduced coverage in the us-central1 data
center is its vast size, as will be shown later in this section. Another factor might be that us-central1
has a more dynamic instance placement behavior, as discovered in Section 3.5.1.
Figure 3.10b shows a similar behavior, as we vary the victim size while keeping the number

of victim instances set to 100. Overall, considering the data from both Figure 3.10a and 3.10b,
we conclude that, in the large majority of cases, the number or the size of victim instances has no
significant influence on the average victim instance coverage.

Financial cost of the attack. FaaS platforms such as Cloud Run only charge users for the active
time of instances. Since we disconnect from all the instances after each launch, these instances are
in the idle state between launches and do not contribute to the cost during this time. The main cost
comes from launching instances. On average, to set up a co-location attack with our configuration
(six attacker services, six launches per service, and 800 instances per launch), the estimated average
costs are 24USD, 23USD, and 27USD in us-east1, us-central1, and us-west1, respectively. These
costs are small.

Scale of Cloud Run clusters. To estimate the size of a Cloud Run cluster, we deploy eight services
from each of the three accounts (ACCOUNT 1, ACCOUNT 2, and ACCOUNT 3) and use the total 24
services to explore hosts that run Cloud Run services in the data center. We use the optimized
strategy to launch instances of these services and record the apparent host footprint of each launch.
We launch each service four times. Then, the size of the Cloud Run cluster is estimated by counting
the number of unique host fingerprints across all launches. The intuition for using services from
different accounts instead of more services from the same account is that we can start exploration
from different base hosts, and thus discover new hosts more efficiently.
Figure 3.11 shows the cumulative number of unique apparent hosts as we aggregate apparent

hosts across launches. In total, these launches found 474 apparent hosts in us-east1, 1702 apparent
hosts in us-central1, and 199 apparent hosts in us-west1. Since the growth of the cumulative number
of unique apparent hosts gradually flattens out in all three data centers as we include more launches,
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it is reasonable to use the total number of unique apparent hosts that we found to estimate the size
of the Cloud Run cluster in each data center. Using this estimation, in the co-location experiment
that we performed using Strategy 2, the attacker (ACCOUNT 1) covered 59%, 53%, and 82% of the
hosts in us-east1, us-central1, and us-west1 on average, respectively.
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Figure 3.11: Cumulative number of unique apparent hosts across launches.

Co-location in the GEN 2 environment. We evaluate our optimized launching strategy in the
GEN 2 environment, with both attacker and victims launching GEN 2 instances. Averaging three
measurements in each data center, we observe victim instance coverage of 87.3% with ACCOUNT 2
and 88.7% with ACCOUNT 3 in us-east1; 40.7% with ACCOUNT 2 and 75.3% with ACCOUNT 3 in
us-central1; and 96.0% with ACCOUNT 2 and 97.3% with ACCOUNT 3 in us-west1. No significant
coverage differences arise when varying the number of victim instances or size. These results
indicate that our launching strategy is highly effective in the GEN 2 environment as well.

Potential attack optimizations. To occupy an even larger fraction of Cloud Run hosts within
a data center, the attacker can create more accounts and deploy more services per account. This
approach is similar to the experiment wherewemeasured the scale of CloudRun clusters. However,
a challenge arises as cloud providers often cap new accounts to limited resources—e.g., allowing
a maximum of only 10 instances per service. For an attacker to be eligible for higher quotas, the
new account needs to sustain a consistent usage over several months. This limitation results in
additional time and financial costs.
If the attacker intends to repeatedly attack services from the same victim account, an optimization

is to record the fingerprints of hosts used by the victim during the first attack. These hosts can be
the base hosts preferred by the victim. Therefore, in the subsequent attacks targeting the same
victim, the attacker can focus side-channel attack efforts on hosts with fingerprints that match the
fingerprints recorded in the first attack.
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3.6 POTENTIAL MITIGATIONS

Our two fingerprinting techniques exploit the fact that the timestamp counter (TSC) value or its
frequency are shared between the host and untrusted user containers. Therefore, to defend against
our techniques, one could mask both the value and frequency of the host’s TSC through either TSC
emulation or hardware-assisted TSC virtualization.
In the non-virtualized GEN 1 environment, the host can disable rdtsc and rdtscp in Ring-3

(i.e., userspace) by configuring the CR4 model specific register [130]. By doing so, the kernel can
trap and emulate both instructions. However, this mitigation also forces user applications to switch
to kernel space when accessing high-precision timers, incurring high timer access overhead.
The impact of the slower timer accesses depends on the specific application and its use case.

Hence, the actual end-to-end execution overhead in an application can only be determined through
benchmarking. We identify some applications where this added end-to-end execution overhead
is likely to matter: (1) real-time systems that process high-frequency events such as live media
or financial data, (2) database systems using fine-grained timestamps for concurrency control, (3)
distributed systems employing fine-grained timestamps for synchronization, and (4) applications
characterized by intensive logging and journaling. For instance, Cassandra’s [140] write latency is
reportedly reduced by 43% on Amazon EC2 instances after switching from the xen clock source
to TSC (the xen clock source requires a context switch to kernel space to access) [141].
In the virtualized GEN 2 environment, the hypervisor can also trap and emulate both rdtsc and

rdtscp, which, as in GEN 1, leads to significant timer access overhead. An alternative that does not
add overhead is for the host to support hardware-assisted TSC virtualization features, such as TSC
offseting and scaling [130, 142]. These features are available on modern Intel and AMD processors
and were primarily developed for live VM migration.
Besides emulating or virtualizing the TSC, cloud vendors can also adopt scheduling algorithms

that reduce the chance of co-location [143, 144] or mitigate the risk of side-channel attacks after
co-location is achieved [145]. Finally, they can detect and stop ongoing side-channel attacks [146,
147, 148, 149].

3.7 RELATED WORK

Co-location attacks in the public cloud. In 2009, Ristenpart et al. [37] conducted the first study
of VM co-location attacks on Amazon’s EC2 service using network probing. To assess Amazon’s
defenses in response to this work, Xu et al. [38] investigated VM co-location attacks on Amazon
EC2 service in 2015, by employing network scanning. However, these network-based techniques
have become obsolete in the modern cloud environment, due to the widespread adoption of the vir-
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tual private cloud (VPC) [126], which logically isolates the networking environments of different
accounts. To overcome the challenge posed by VPC, Varadarajan et al. [39] employed a pairwise
covert-channel test, based on memory bus contention explored byWu et al. [89], to investigate VM
co-location attacks. However, due to the scalability issue of pairwise testing, their approach is un-
suitable for the modern FaaS environment, where it is necessary to verify co-location of thousands
of instances.

Exploiting cloud orchestrators. Makrani et al. [150] proposed an attack named Cloak & Co-
locate, which employs adversarial machine learning to generate fake resource usage traces, fooling
machine learning-based resource provisioning systems [151, 152] to co-locate attacker instances
with the victim. However, their evaluation is limited to a private mini-cloud running on local
clusters. Concurrent to Cloak & Co-locate, Fang et al. [139] proposed Repttack, suggesting that
the attacker can launch instances with requirements and preferences that replicate the victim’s to
increase the likelihood of co-location. However, on Cloud Run, we do not observe any signif-
icant increase in co-location rate when the attacker instance has the same configuration as the
victim (Section 3.5.2).

Remote device fingerprinting. Kohno et al. [153] exploited the clock skew in system time that
is accumulated over time to fingerprint remote physical devices. They monitor such skew through
timestamps included in TCP packets. However, for contemporary systems where clocks are well
synchronized to the real-world time through the network time protocol (NTP) [154], such accu-
mulated clock skew is not detectable using coarse-grained TCP timestamps [155], which have the
resolution of only one millisecond [156]. Compared to their approach, our fingerprinting method
for GEN 1 relies on the host’s boot time instead of clock skew. Further, our fingerprinting method
for GEN 2 detects clock frequency skews, making it effective even if clocks are well synchronized
through NTP.

3.8 CONCLUSION

In this chapter, we presented the first comprehensive study on risks of and techniques for co-
location attacks in modern public cloud FaaS environments. We introduced two novel physical
host fingerprinting techniques based on the timestamp counter to aid in reverse engineering instance
placement policies. Using host fingerprints, we proposed a cost-effective methodology for large-
scale instance co-location verification. With these techniques, we conducted an extensive study on
Google Cloud Run, discovering an exploitable instance placement behavior. Based on our findings,
we devised an efficient instance launching strategy that deploys attacker instances across a large
portion of Cloud Run cluster hosts within a data center. Our strategy attains high attack efficacy at
minimal financial cost.
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CHAPTER 4: Last-Level Cache Prime+Probe Attack in the Modern Public Cloud

4.1 INTRODUCTION

In Chapter 3, we showed how an unprivileged cloud user can co-locate their containers with a
target victim’s containers on the same physical hosts. In this chapter, we focus on how to extract
information from the victim container with side-channel attacks after co-location.
Among all side-channel attacks, a particularly dangerous class of attacks is Prime+Probe attacks

on the last-level cache (LLC) [3, 4, 5, 15, 157, 158, 159] (Section 2.2.2). This is because these at-
tacks do not require the attacker to share a physical core or memory pages with the victim program.
As a result, this chapter focuses on LLC Prime+Probe attacks in public clouds.
Despite the potency of LLC Prime+Probe attacks, executing them in a modern public cloud

environment is challenging for several reasons. First, the modern cloud is noisy, as the hardware is
shared by many tenants to attain high computation density [34, 35, 160]. In particular, the LLC is
flooded with noise created by activities of other tenants. This noise not only interferes with eviction
set construction (STEP 2 in Table 2.1), but also poses challenges to identifying the target LLC sets
(STEP 3 in Table 2.1) and exfiltrating information (STEP 4 in Table 2.1).
Second, the modern cloud is dynamic. With cloud computing paradigms like Function-as-a-

Service (FaaS) [29, 30, 31], user workloads are typically short-lived on a host (e.g., they last only
from a few minutes to tens of minutes [64, 65, 66, 161, 162]). As a result, the attacker has a limited
time window to complete all the attack steps while co-locating with the victim. This challenge is
exacerbated by the increased number of LLC sets in modern processors—which require preparing
more eviction sets and monitoring more cache sets.
Third, the lack of huge pages in some containerized environments [30] and the wide adoption of

non-inclusive LLCs increase the effort to execute LLC Prime+Probe attacks in clouds [5]. Thus,
while İnci et al. [15, 40] conducted an LLC Prime+Probe attack on AWS EC2 in 2015, their tech-
niques are incompatible with modern clouds, as they relied on huge pages, long-running attack
steps, and inclusive LLCs.
As a result of the aforementioned challenges, cloud vendors believe that LLC Prime+Probe at-

tacks are not a threat “in the wild.” For instance, the security designwhitepaper of Amazon’s Elastic
Compute Cloud (EC2) [138] explicitly rules out LLC Prime+Probe attacks as impractical [36].
This chapter refutes the belief that LLC Prime+Probe attacks are impractical in the noisy mod-

ern public cloud. We demonstrate, for the first time, an end-to-end, cross-tenant attack on crypto-
graphic code (a vulnerable ECDSA implementation [163]) on Cloud Run [30], an FaaS platform
from Google Cloud [164]. Every step of the attack requires new techniques to address the practi-
cal challenges posed by the cloud. While our demonstrated attack targets Google Cloud Run, the
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techniques that we develop are applicable to any modern Intel server with a non-inclusive LLC.
Therefore, we believe that multi-tenant cloud products from other vendors, such as AWS [165] and
Azure [166], may also be susceptible to our attack techniques.
This chapter makes the following contributions:

1 Existing Prime+Probe approaches fail in the cloud. We show that STEPS 2–4 of Prime+Probe
in Table 2.1 aremade harder in the Cloud Run environment. In particular, we show that state-of-the-
art eviction set construction algorithms, such as group testing [47, 133, 167] and Prime+Scope [159],
have a low chance of successfully constructing eviction sets onCloudRun. Due to the noise present,
they take 10× to 24× as much time as when operating in a quiescent local setting. Since the at-
tacker needs to construct eviction sets for up to tens of thousands of LLC sets within a limited time
window, this low performance makes existing eviction set construction algorithms unsuitable for
the public cloud.

2 Effective construction of eviction sets in the cloud. To speed-up the generation of eviction sets
in STEP 2, we introduce: (1) a generic optimization named L2-driven candidate address filtering
that is applicable to all eviction set construction algorithms, and (2) a new Binary Search-based
eviction set construction algorithm. By combining these two techniques, it takes only 2.4 minutes
on average to construct eviction sets for all the 57,344 LLC sets of an Intel Skylake-SP machine
in the noisy Cloud Run environment, with a median success rate of 99.1%. In contrast, utilizing
the well-optimized state-of-the-art eviction set construction algorithms, this process is expected to
take at least 14.6 hours.
3 Techniques for victim monitoring and target set identification. We develop two novel tech-
niques for STEPS 3–4. The first one, called Parallel Probing, enables the monitoring of the victim’s
memory accesses with high time resolution and with a quick recovery from the noise created by
other tenants’ accesses. The technique probes a cache set with overlapped accesses, thus featuring
a short probe latency and a simple high-performance prime pattern.
The second technique identifies the target LLC sets in a noise-resilient manner. This technique

leverages power spectral density [168] from signal processing to detect the victim’s periodic ac-
cesses to the target LLC set in the frequency domain. It enables the attacker to identify the target
LLC set in 6.1 s, with an average success rate of 94.1%.
4 End-to-end attack in production. Using these techniques, we showcase, for the first time, an
end-to-end, cross-tenant attack on a vulnerable ECDSA implementation [163] on Cloud Run. We
successfully extract a median value of 81% of the secret ECDSA nonce bits from a victim container.
The LLC Prime+Probe attack, which includes STEPS 2–4 from Table 2.1, takes approximately 19
seconds on average after co-locating on the victim’s host.

Availability. Weopen sourced our implementations at https://github.com/zzrcxb/LLCFeasible.
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Figure 4.1: Mapping addresses to Skylake-SP’s L2 and LLC.

4.2 BACKGROUND: CONSTRUCTING EVICTION SETS ON MODERN INTEL
PROCESSORS

4.2.1 Eviction Sets

A key step in Prime+Probe is the construction of an eviction set [3, 133]. An eviction set for
a specific cache set 𝑠 is a set of addresses that, once accessed, evict any cache line mapped to
𝑠 [3, 133]. Given a 𝑊 -way cache, an eviction set needs to contain at least 𝑊 addresses that are
mapped to 𝑠. These addresses are referred to as congruent addresses [133]. An eviction set is
minimal if it has only𝑊 congruent addresses.

Eviction set construction algorithms. Building a minimal eviction set for a cache set 𝑠 generally
consists of two steps [3, 133]. The first step is to create a candidate set that contains a sufficiently
large set of candidate addresses, of which at least𝑊 addresses are congruent in 𝑠. The second step
is to prune the candidate set into a minimal set.

1 Candidate set construction. When a program accesses a virtual address (VA), the address is
translated to a physical address (PA) during the access. Part of the PA is used to determine to which
cache set the PA maps. For example, Figure 4.1 illustrates the address mapping of Intel Skylake-
SP’s L2 and LLC. The L2 uses PA bits 15–6 as the set index bits to map a PA to an L2 set. The
LLC uses PA bits 16–6 as the set index bits. All the PA bits except for the low-order 6 bits are used
to map a PA to an LLC slice [169]. The low-order 6 bits of the PA and VA are shared and are the
line offset bits. The low-order 12 bits of the PA and VA are also shared and are the page offset bits.
This is because the standard page size is 4 kB.
An unprivileged attacker can control only the page offset of a PA. They lack control and knowl-

42



edge of the higher-order PA bits. As a result, the attacker has only partial control and knowledge
of the set index bits of the L2 and LLC, as well as of the slice index bits of the LLC. Therefore,
for a given attacker-controlled VA, there are a number of possible L2 or LLC sets to which it may
map. We refer to this number as the cache uncertainty, denoted by 𝑈.
In general, the set index bits are directly used as the set number. Therefore, the L2 cache’s

uncertainty is 𝑈𝐿2 = 2𝑛𝑢𝑐 , where 𝑛𝑢𝑐 is the number of uncontrollable L2 set index bits. For the
sliced LLC, its uncertainty depends on the slice hash function. On modern processors, LLC slice
bits usually map to individual slices via a complex, non-linear hash function [5, 169]. As a result,
partial control over the slice index bits is not enough to reduce the number of possible slices that a
VA might hash to. Hence, the LLC’s uncertainty is 𝑈𝐿𝐿𝐶 = 2𝑛𝑢𝑐 ×𝑛𝑠𝑙𝑖𝑐𝑒𝑠, where 𝑛𝑢𝑐 is the number
of uncontrollable LLC set index bits and 𝑛𝑠𝑙𝑖𝑐𝑒𝑠 is the number of LLC slices. In the Skylake-
SP’s address mapping shown in Figure 4.1, there are 5 uncontrollable LLC set index bits and 4
uncontrollable L2 set index bits. Hence, a 28-slice Skylake-SP has an LLC uncertainty of 𝑈𝐿𝐿𝐶 =
25 × 28 = 896 sets and an L2 uncertainty of 𝑈𝐿2 = 24 = 16 sets.
When constructing a candidate set for a target cache set 𝑠 at page offset 𝑜, the set needs to

contain a large number of addresses with page offset 𝑜 due to cache uncertainty. Intuitively, the
cache uncertainty 𝑈 indicates how unlikely a candidate address maps to 𝑠. Therefore, the greater
the value of 𝑈 , the larger the candidate set needs to be [133, 167].
2 Pruning the candidate set into a minimal eviction set. Given a candidate set, there are several
algorithms [3, 47, 51, 133, 159, 170] to build a minimal eviction set with𝑊 congruent addresses.
We briefly describe two state-of-the-art algorithms [47, 133, 159]. To simplify the discussion, we
assume that there is an address 𝑇𝑎 that is mapped to cache set 𝑠 and accessible by the attacker.
Consequently, the attacker can determine if a set of addresses forms an eviction set for 𝑠 by testing
whether they evict 𝑇𝑎 after being accessed.
Algorithm 1: Group testing [47, 133]. Group testing splits the candidate set into 𝐺 groups of
approximately the same size. A common choice of 𝐺 is 𝐺 = 𝑊 + 1 [47, 133]. After the split, the
algorithm withholds one group from the candidate set and tests whether the remaining addresses
can still evict 𝑇𝑎. This process involves first loading 𝑇𝑎 into the cache, traversing the remaining
addresses, and timing an access to 𝑇𝑎 to check if it remains cached. If 𝑇𝑎 is evicted, the withheld
group is discarded and the candidate set is reduced; otherwise, the withheld group is added back to
the candidate set and the algorithm withholds a different group. Overall, with 𝐺 = 𝑊 + 1, group
testing has a complexity of 𝑂(𝑊 2𝑁) memory accesses [133], where𝑊 is the associativity of the
target cache and 𝑁 is the candidate set size.

Algorithm 2: Prime+Scope [159]. Prime+Scope first loads 𝑇𝑎. Then, it sequentially accesses each
candidate address from the list. After each candidate address is accessed, the algorithm checks
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whether 𝑇𝑎 is still cached. If it is not, that indicates that the last accessed candidate address is
congruent, and it is added to the eviction set. This search for congruent addresses is repeated until
𝑊 different congruent addresses are identified, which form a minimal eviction set for 𝑠.
Number of Eviction Sets. In practice, a victim often accesses only a few target cache sets in a
secret-dependent manner. An unprivileged attacker, however, generally has limited or no informa-
tion about the locations of these target cache sets. Consequently, in STEP 2 of Table 2.1, the attacker
needs to build eviction sets for all possible cache sets that might be the targets. Subsequently, in
STEP 3, the attacker uses Prime+Probe to monitor each of these possible cache sets to identify the
actual target cache sets.
The number of eviction sets that the attacker needs to build and monitor depends on how much

information about the target cache sets the attacker has. If the attacker knows the page offset of
a target cache set, they only need to build eviction sets for cache sets corresponding to that page
offset and monitor such sets [3, 102]. We refer to this scenario as PAGEOFFSET. Conversely, if the
attacker has no information about the target sets, they must construct eviction sets for all cache
sets in the system and monitor them [3, 102]. We refer to this scenario as WHOLESYS. Considering
the standard 4 kB page size and 64B cache line size, the attacker in the WHOLESYS scenario needs
to build and monitor 64× as many eviction sets as in the PAGEOFFSET scenario. For a 28-slice
Skylake-SP CPU, the attacker needs to build 𝑈𝐿𝐿𝐶 = 896 eviction sets for the LLC sets at a give
page offset and 𝑈𝐿𝐿𝐶 × 64 = 57,344 eviction sets for all LLC sets in the system.

Bulk Eviction Set Construction. The process of constructing eviction sets for the PAGEOFFSET
or WHOLESYS scenarios is based on the procedure to build a single eviction set. Because one can
construct eviction sets for the WHOLESYS scenario by repeating the process for the PAGEOFFSET
scenario at each possible page offset, we only explain the generation of eviction sets for the PAGE-
OFFSET scenario.
First, we build a candidate set containing addresses with the target page offset. The candidate

set needs to contain enough congruent addresses for any cache set at that page offset. Second, we
pick and remove one address from the candidate set and use it as the target address 𝑇𝑎. Third, we
use either of the address pruning algorithms in Section 4.2.1 to build an eviction set for the cache
set to which 𝑇𝑎 maps. The constructed eviction set is removed from the candidate set and saved
to a list 𝐿 containing all the eviction sets that have been built so far. Fourth, we pick and remove
another address 𝐴 from the reduced candidate set. If 𝐴 cannot be evicted by any eviction set in
𝐿, we use 𝐴 as the target address 𝑇𝑎 and proceed to the third step to construct a new eviction set;
otherwise, we discard 𝐴 and repeat the fourth step. We stop when either we run out of candidate
addresses or enough eviction sets have been built.
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Table 4.1: Parameters of the Skylake-SP cache hierarchy.

Structure Parameters
L1 Data/Instruction: 32 kB, 8 ways, 64 sets, 64 B line
L2 1MB, 16 ways, 1,024 sets, non-inclusive to L1
LLC Slice 1.375MB, 11 ways, 2,048 sets, non-inclusive to L1/L2
SF Slice 12 ways, 2,048 sets
Num. Slices Up to 28 slices. A 28-slice LLC and SF is the most common configuration in

Cloud Run datacenters

4.2.2 Non-Inclusive LLC in Intel Server CPUs

Beginning with the Skylake-SP microarchitecture [171], Intel adopted a non-inclusive LLC de-
sign on their server platforms. Under this design, cache lines in private caches may or may not
exist in the LLC. The Snoop Filter (SF) [171] tracks the ownership of cache lines present only in
private caches, serving as a coherence directory for such cache lines. Similar to the LLC, the SF
is shared among cores and sliced. The SF has the same number of sets, number of slices, and slice
hash function as the LLC. Therefore, if two addresses map to the same LLC set, they also map to
the same SF set.
The interactions among private caches, SF, and LLC are complex and undocumented. Based

on prior work [5] and our reverse engineering, we provide a brief overview of these interactions,
acknowledging that our descriptions may not be entirely accurate or exhaustive.
Lines that are in state EXCLUSIVE (E) or MODIFIED (M) in one of the private caches are tracked by

the SF; we call these lines private. Lines that are in state SHARED (S) in at least one of the private
caches are tracked by the LLC (and, therefore, are also cached in the LLC); we call these lines
shared.
When an SF entry is evicted, the corresponding line in the private cache is also evicted. The

evicted line may be inserted into the LLC depending on a reuse predictor [172, 173]. When a line
cached in the LLC needs to transition to state E or M due to an access, it is removed from the LLC
and an SF entry is allocated to track it. When a private line transitions to state S, it is inserted into
the LLC, and its SF entry is freed.
In this chapter, we use the FaaS Google Cloud Run platform [30]. In our experiments, we find

that the CPU microarchitecture used in Cloud Run datacenters is dominated by Intel Skylake-SP
and Cascade Lake-SP. Since these two microarchitectures have similar cache hierarchies, we focus
our discussion on Skylake-SP. Table 4.1 lists the key parameters of Skylake-SP’s cache hierarchy.
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4.3 THREAT MODEL

In this chapter, we assume an attacker who aims to exfiltrate sensitive information from a victim
containerized service running on a public FaaS platform such as Cloud Run [30] through LLC side
channels. In Chapter 3, we have demonstrated how an attacker can co-locate with a target victim
container on Cloud Run. If the victim runs container instances on multiple hosts, our techniques
can co-locate attacker containers with a large portion of the victim instances. Therefore, we assume
the co-location step is completed and focus on STEPS 2–4 from Table 2.1.
We assume that the attacker is an unprivileged user of a FaaS platform. The attacker’s interaction

with the FaaS platform is limited to the standard interfaces that are available to all platform users.
Using these interfaces, the attacker can deploy services that contain attacker-controlled binaries.
Finally, we assume that the attacker can trigger the victim’s execution by sending requests to the
victim service, either directly or through interaction with a public web application that the victim
service is part of.
Since cloud vendors typically prevent different users from simultaneously using the same physi-

cal core via Simultaneous Multithreading (SMT) [36, 100], the attacker must perform a cross-core
cache attack. Similar to prior work [5, 159] that targets Intel Skylake-SP, we create eviction sets
for the SF and monitor the SF for the victim’s accesses. Note that an SF eviction set is also an LLC
eviction set, as the SF and LLC share the same set mapping and the SF has more ways.
Lastly, we found that user containers on Cloud Run are unable to allocate huge pages. Therefore,

we assume that the attacker can only rely on the standard 4 kB pages to construct eviction sets.
This assumption is consistent with other restricted execution environments [102, 133, 174, 175]
and places fewer requirements on the attacker’s capability.

4.4 EXISTING EVICTION SETS FAIL IN THE CLOUD

In this section, we show that existing algorithms to construct eviction sets fail in the cloud. This
is because of the noise in the environment and the reduced time window available to construct
the eviction sets. In the following, we first examine the resilience to environmental noise of a
core primitive used by all address pruning algorithms (Section 4.4.1). Then, we evaluate the suc-
cess rate and execution time of the two state-of-the-art address pruning algorithms on Cloud Run
(Section 4.4.2), and investigate the reasons why they fall short in the cloud (Section 4.4.3).
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4.4.1 TestEviction Primitive & Its Noise Susceptibility

All the address pruning algorithms require a primitive that tests whether a target cache line is
evicted from the target cache after a set of candidate addresses are accessed [3, 5, 47, 133]. We refer
to this generic primitive as 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. Specifically, group testing uses 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 to prune
away non-congruent addresses, while Prime+Scope employs it to identify congruent addresses.
Due to environmental noise, 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 can return false-positive results—i.e., the target cache

line is evicted by accesses from other tenants and not by the accesses to the candidate addresses.
When this occurs in group testing, the algorithm may discard a group of addresses with congru-
ent addresses, falsely believing that the remaining addresses contain enough congruent addresses.
Similarly, Prime+Scope can misidentify a non-congruent address as a congruent one, incorrectly
including it in the eviction set. In both cases, the algorithms may fail to construct an eviction set.
In general, the longer the execution time of 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is, the more susceptible it becomes to

noise, due to the increased likelihood of the target cache set being accessed by other tenants during
its execution. Thus, the execution time of 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 not only affects the end-to-end execution
time of the algorithm, but also the algorithm’s resilience to noise.
Prior work [133] that uses the group testing algorithm implements 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 with linked-list

traversal [176]. As this implementation serializes memory accesses to candidate addresses, we
refer to this type of implementation as sequential TestEviction. Prime+Scope also uses sequential
𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, as it tests whether a target line is still cached after each access to a candidate address.
Since sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 does not exploit memory-level parallelism (MLP), it has a long
execution time.
In our work, we find that overlapping accesses to candidate addresses to exploit MLP can sig-

nificantly reduce the execution time of 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. We refer to this implementation as parallel
𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. It is based on a pattern proposed by Gruss et al. [174], and our implementation
can be found online [177]. However, as will be shown in Sections 4.4.2 and 4.4.3, even though
parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is significantly faster than sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, it alone is not enough
to overcome the noise in the cloud. In the rest of this chapter, we use parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 in all
algorithms except for Prime+Scope, which is incompatible with parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 due to its
algorithm design.

4.4.2 Noise Resilience of Existing Algorithms

In this section, we implement both the group testing and Prime+Scope algorithms for Skylake-
SP’s SF. We then evaluate their success rates and execution times in a local environment with
minimal noise, as well as in the Cloud Run environment, which features a significant level of
environmental noise from other tenants.
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Implementation. Following prior work that builds SF eviction sets [5, 159], we first construct a
minimal LLC eviction set comprising 11 congruent addresses, and then expand it to an SF eviction
set by finding one additional congruent address. To insert cache lines into the LLC, we use a helper
thread running on a different physical core that repeats the accesses made by the main thread.
These repeated accesses turn the state of the cache lines to S, and thus cause the lines to be stored
in the LLC (Section 4.2.2). Similar techniques are used in prior work [5, 159]. Finally, as per
Section 4.4.1, our group testing implementation uses parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, while our Prime+Scope
implementation uses sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.
To ensure a fair comparison among algorithms, we re-implement group testing and Prime+Scope

using the same data structures to store candidate sets and eviction sets, and the same primitives to
test whether a set of addresses is an eviction set. We call these algorithms GT and PS, respectively.
In addition, we also implement optimized versions of these algorithms for Skylake-SP. We call
these optimized algorithms GTOP and PSOP.

Optimizations to group testing. In the baseline group testing algorithm [133], the candidate set
is divided into 𝐺 similarly-sized groups. The algorithm temporarily withholds a group and tests
whether the remaining addresses can still evict a target address 𝑇𝑎 (Section 4.2.1). Once such a
removable group is found, the algorithm prunes the identified group, stops searching the remaining
groups, and re-partitions the remaining candidates into 𝐺 smaller groups. This approach is called
early termination. Prior work [167] suggests that this approach improves performance. However,
we find that an alternative approach that continues to search the remaining groups without early
termination offers better performance and higher success rate on Skylake-SP. We believe that not
performing early termination helps the algorithm to prune away addresses more quickly by pruning
groups of larger sizes. We call the alternative approach without early termination GTOP.
We also implement a group testing variant suggested by Song et al. [167]. This variant randomly

withholds 𝑛/𝑊 candidate addresses and tests whether they are removable, where 𝑛 is the remaining
number of addresses in the candidate set. Based on our evaluation, this variant has similar perfor-
mance and success rate as GTOP in both local and Cloud Run environments. Therefore, we omit
the discussion of this variant in the chapter.

Optimizations to Prime+Scope. In the baseline Prime+Scope [159], when the algorithm finds
a congruent address, the address is removed from the candidate set. This depletes the congruent
addresses that are near the head of the candidate list, causing the algorithm to search deep into the
list. In PSOP, we gradually move candidate addresses from the back of the list to the a near front
position after we identify a congruent address. This optimization “recharges” the front of the list
with more congruent addresses and reduces the number of candidates being checked.

Experiment setup. We evaluate these algorithms in both a cloud setup and a local setup.
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Cloud setup. We deploy our attacker service to the us-central1 data center, where we observe the
largest Cloud Run cluster. Since our setup requires a concurrently running helper thread, each
attacker instance requests 2 physical cores. In us-central1, the predominant CPU model used by
Cloud Run is the Intel Xeon Platinum 8173M, which is a Skylake-SP processor with 28 LLC/SF
slices.
During each experiment, we launch 300 attacker instances and retain only one per host. We then

use each algorithm to build SF eviction sets for 50 random cache sets. To measure the effects of
environmental noise fluctuations due to computation demand changes, we repeat our experiments
for five days and at four different periods each day, namely, morning (9–11am), afternoon (3–5pm),
evening (8–10pm), and early morning (3–5am). Altogether, we conducted 1,767 experiments on
Cloud Run, totaling 88,350 eviction set constructions for each algorithm.
Local setup. Our local setup uses a Skylake-SP processor with the Intel Xeon Gold 6152, which
has 22 LLC/SF slices. During the experiment, the system has minimal activity beyond the running
attacker container instance. We employ each algorithm to construct 1,000 SF eviction sets.
Algorithms. For each SF eviction set, we allow each algorithm to make at most 10 construc-
tion attempts. If the algorithm fails these many times or it takes more than 1,000ms to com-
plete, we declare its failure. For group testing, which uses backtracking to recover from erroneous
𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 results, we permit at most 20 backtracks per attempt.
In our experiments, we need to start by generating a set of candidate addresses for a given page

offset. Empirically, we find that a set with 3𝑈𝑊 candidate addresses is enough for Skylake-SP’s
LLC/SF, where 𝑈 and𝑊 are the cache uncertainty (Section 4.2.1) and associativity, respectively.

Results. Table 4.2 shows the effectiveness of the state-of-the-art algorithms to construct an eviction
set for SF in different environments: quiescent local, Cloud Run, and Cloud Run from 3am to 5am,
which are typically considered “quiet hours”. The metrics shown are the success rate, average
execution time, standard deviation of execution time, and median execution time. The success rate
is the probability of successfully constructing an SF eviction set. The execution time measures the
real-world time that it takes to reduce a candidate set to an LLC eviction set and then extend it with
one additional congruent address to form an SF eviction set.
We see that all algorithms achieve very high success rates and good performance in the quiescent

local environment. However, on Cloud Run, where there is substantial environmental noise from
other tenants, all algorithms suffer significant degradation in both success rate and performance.
Moreover, we do not observe significant variations in success rate or execution time across different
periods of a day, including the 3am to 5am quiet hours. We believe this could be due to certain server
consolidation mechanisms that adjust the number of active hosts based on demand [178, 179, 180],
leading to a relatively constant load level on active hosts throughout the day.
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Table 4.2: Effectiveness of the state-of-the-art address pruning algorithms in different environ-
ments. The metrics shown are: success rate, average execution time, standard deviation of execu-
tion time, and median execution time.

Env. Metrics GT GTOP PS PSOP

Quiescent
Local

Succ. Rate 97.0% 98.8% 98.5% 98.2%
Avg. Time 32.9ms 21.1ms 55.9ms 54.9ms
Stddev Time 72ms 35ms 166ms 156ms
Med. Time 18.5ms 13.7ms 23.8ms 21.7ms

Cloud
Run

Succ. Rate 39.4% 56.0% 3.2% 6.9%
Avg. Time 714ms 512ms 580ms 572ms
Stddev Time 476ms 457ms 329ms 331ms
Med. Time 1,015ms 384ms 504ms 495ms

Cloud
Run

(3-5am)

Succ. Rate 41.4% 57.2% 3.7% 7.6%
Avg. Time 693ms 499ms 581ms 576ms
Stddev Time 482ms 456ms 327ms 332ms
Med. Time 1,009ms 350ms 509ms 502ms

Implications. As discussed in Section 4.2.1, an unprivileged attacker needs to construct eviction
sets for all SF sets at a given page offset (PAGEOFFSET) or in the system (WHOLESYS). We estimate
the time to construct many eviction sets as 𝑛𝑠𝑒𝑡𝑠 × 𝑡𝑎𝑣𝑔/𝑆𝑅, where 𝑛𝑠𝑒𝑡𝑠 is the number of eviction
sets we need to build, 𝑡𝑎𝑣𝑔 is the average execution time of attempting to construct one eviction set,
and 𝑆𝑅 is the success rate. Similar metrics are also used in prior work [167].
For the Skylake-SP processor that we are targeting, the attacker needs to build 896 and 57,344

SF eviction sets in the PAGEOFFSET and WHOLESYS scenarios respectively (Section 4.2.1). Hence,
on Cloud Run, GTOP, the fastest and most noise-resilient of the evaluated algorithms, would take
13.7 minutes and 14.6 hours to construct eviction sets required in the PAGEOFFSET and WHOLESYS
scenarios, respectively.
We performed two additional small-scale experiments to validate our estimation. In the first

experiment, which is conducted on 95 hosts, GTOP attempts to construct the 896 eviction sets
required in the PAGEOFFSET scenario. GTOP takes, on average, 9.9 minutes to complete the task,
and it only succeeds in 37.3% of the sets. In the second experiment, which is conducted on 69
hosts, GTOP tries to construct the 57,344 eviction sets required in the WHOLESYS scenario. Due
to the timeout constraint of Cloud Run [181], we can only run GTOP for one hour and thus report
the number of eviction sets it constructs under the constraint. Our best outcome is constructing
3,741 eviction sets in one hour, with an average number of 1,074 sets in one hour. This means that
building eviction sets for the system’s 57,344 SF sets would take GTOP over 57,344/3,741 ≈ 15
hours even in the best case.
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This performance is unsatisfactory for a practical attack on FaaS platforms for several reasons.
First, on some popular FaaS platforms [29, 31], the attacker can only execute for 10 to 15 minutes
before timeout [65, 66]. Even on amore permissive platform like Cloud Run, themaximum timeout
is just one hour [181]. After a timeout, the attacker might not reconnect to the same instance [181],
thus losing the attack progress. Second, container instances usually have a short lifetime before
being terminated [161, 162]. Hence, the long eviction set construction time means that the co-
located victim instancemay get terminated before eviction sets are ready. Finally, as FaaS platforms
charge customers by the CPU time, the long execution time can cause significant financial cost to
the attacker. This is especially the case if the attacker is launching many attacker instances on
different hosts to increase the chance of a successful attack.

4.4.3 Explaining the Results

Compared to a quiescent local environment, we find that the cloud environment has a drastically
higher rate of LLC accesses made by other tenants, and that 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s execution is slower.
These two factors contribute to why the state-of-the-art algorithms are ineffective in a cloud en-
vironment. Our conclusion is based on the following two experiments. To ensure meaningful
comparisons, both experiments are conducted using the container instances of Section 4.4.2.

Experiment 1: LLC set access frequency. In this experiment, we measure how frequently an
LLC set is accessed by background activities, such as system processes and processes of other
tenants. The reason why we focus on the access frequency of the LLC instead of the SF is because
address pruning algorithms build eviction sets in the LLC and then expand them to SF eviction sets
(Section 4.4.2).
During the experiment, we first construct an eviction set for a randomly chosen LLC set. Then,

we detect background LLC accesses with Prime+Probe [1]. We record the timestamp of each LLC
access. Each experiment trial collects the timestamps of 1,000 back-to-back LLC accesses. On
Cloud Run, we perform 50 trials per host (88,350 trials in total). In the local environment, we carry
out 1,000 trials.
Experiment 2: TestEviction execution duration. In this experiment, we measure the execution
duration of both the parallel and sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 when testing varying numbers of candi-
date addresses. We perform the measurement in both the Cloud Run and local environments. For
each host and candidate set size, we measure 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s execution time for 100 times after 10
warm-ups.

Results. Figure 4.2 shows the cumulative distribution function (CDF) of the time between LLC
accesses by background activity to a randomly chosen LLC set in both environments. On Cloud
Run, the average LLC access rate is 11.5 accesses per millisecond per set. In the local environ-
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Figure 4.2: CDF of the time between accesses by background activity to a randomly chosen LLC
set.
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Figure 4.3: Different 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛’s execution times on Cloud Run under various number of can-
didate addresses.

ment with minimal noise, the average access rate is merely 0.29 accesses per millisecond per set.
Figure 4.3 shows the execution time of the parallel and sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛, for varying num-
bers of candidate addresses on Cloud Run. As the execution times of 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 in the local
environment follow similar trends, we omit them in the plot. It can shown that, on average, the
execution times of the sequential and parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 are 26.9% and 42.1% lower in the local
environment compared to Cloud Run, respectively.
These results explain why existing address pruning algorithms show unsatisfactory effectiveness

on Cloud Run. For Prime+Scope, when using sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 to identify the first congru-
ent address, it is expected to test 11𝑈𝐿𝐿𝐶 candidate addresses. This takes approximately 4.6ms on
average. However, during this time, the target LLC set is expected to experience 53.0 background
LLC accesses. Consequently, Prime+Scope’s 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 very likely reports erroneous results
under this level of noise.
As for group testing, its parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 executes an order of magnitude faster than the

sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. For example, it takes only 134.8µs to test 11𝑈𝐿𝐿𝐶 candidates. Given the
background LLC access rate, the probability of the set not being accessed during the 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛
execution is about 18.4%. This permits the parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 a reasonable chance to complete
without experiencing interference from background accesses. In combination with the backtrack-
ing mechanism [133], group testing has a substantially higher probability of success compared to
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Prime+Scope on Cloud Run. Still, both GT and GTOP experience a large number of backtracks due
to erroneous 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 results and are drastically slowed down on Cloud Run. For example,
the optimized GTOP performs an average number of 32.2 backtracks per eviction set on Cloud Run,
while it only needs 4.0 backtracks on average in the local environment.

4.5 CONSTRUCTING EVICTION SETS IN THE CLOUD

Based on the insights from Section 4.4, we propose two techniques that enable fast (and therefore
also noise-resilient), eviction set construction in the cloud: L2-driven candidate address filtering
(Section 4.5.1) and a Binary Search-based algorithm for address pruning (Section 4.5.2).

4.5.1 L2-driven Candidate Address Filtering

To speed-up the eviction set construction, we propose to reduce the candidate set size with an
algorithm-agnostic optimization that we call candidate address filtering. Our insight is that the L2
set index bits are typically a subset of the LLC/SF set index bits. For example, Skylake-SP uses
PA bits 15-6 as the L2 set index and PA bits 16-6 as the LLC/SF set index (Figure 4.1). Hence,
if addresses 𝐴 and 𝐵 are not congruent in the L2, then 𝐴 and 𝐵 have different PA bits 15-6 and,
therefore, they must not be congruent in the LLC/SF.
Based on this insight, we introduce a new candidate filtering step after candidate set construction

and before address pruning. Assume that we want to construct an eviction set for an LLC/SF set to
which an attacker-accessible address 𝑇𝑎maps. To perform the candidate filtering, we first construct
an L2 eviction set for 𝑇𝑎. Then, using the L2 eviction set, we test whether it can evict each address
from the candidate set. If a candidate address 𝐴 cannot be evicted by the L2 eviction set, then it
implies that𝐴 and 𝑇𝑎 are not congruent in either the L2 or the LLC/SF. Consequently, 𝐴 is removed
from the candidate set. After candidate filtering, the candidate set contains only addresses that are
congruent with 𝑇𝑎 in the L2. These filtered addresses are passed to the address pruning algorithm
to find a minimal LLC/SF eviction set.
As Skylake-SP has an L2 uncertainty of 𝑈𝐿2 = 16, only about 1/16 of the candidate addresses

are congruent with 𝑇𝑎 in L2. Therefore, the size of the filtered candidate set is only about 1/16
of the original set size. On a common 28-slice Skylake-SP CPU, we expect to find one congruent
address every𝑈𝐿𝐿𝐶 = 896 candidates in the candidate set before filtering. With candidate filtering,
we now expect to find one congruent address every 896/16 = 56 candidates.
Since the candidate set is universally used by different address pruning algorithms, including

both group testing and Prime+Scope, our candidate filtering is a generic optimization. Moreover,
in modern processors, the number of L2 sets is typically smaller than the number of LLC sets
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in one LLC slice. Hence, the property that the L2 set index bits are a subset of the LLC set index
bits generally holds for other processors as well, Therefore, the candidate filtering optimization also
applies to them. The idea of candidate filtering can also be applied to a more restricted environment
where the attacker cannot even control the page offset bits [133]. In such an environment, the
attacker can hierarchically construct L1 and L2 eviction sets to gradually filter candidates for the
next lower cache level. Finally, the candidate filtering optimization cannot be applied to building
eviction sets for randomized LLCs, as whether two addresses conflict in a randomized LLC is
independent of whether they conflict in the L2.

4.5.2 Using Binary Search for Address Pruning

To further speed-up eviction set construction in the cloud, we propose a new address pruning
algorithm based on binary search. Our algorithm uses parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.
Algorithm design. Given a list of candidate addresses, we test whether the first 𝑛 addresses can
evict a target address 𝑇𝑎. For a𝑊 -way cache, increasing 𝑛 from zero will result in a negative test
outcome until the first 𝑛 addresses include 𝑊 congruent addresses. We define the tipping point,
denoted by 𝜏, as the smallest 𝑛 for which the first 𝑛 addresses evict 𝑇𝑎. Therefore, 𝜏 is the index of
the𝑊 -th congruent address in the list, assuming that the indexation begins from 1. For a given 𝑛, if
the first 𝑛 addresses evict 𝑇𝑎, it means that 𝑛 ≥ 𝜏; otherwise, 𝑛 < 𝜏. Our main idea is to use binary
search to efficiently determine 𝜏 and thus identify one congruent address. Then, we exclude the
congruent address from any future search, and repeat the binary search process until 𝑊 different
congruent addresses are found.
Figure 4.4 shows the pseudo code of the algorithm. It takes as inputs a target address 𝑇𝑎, an

array of addresses 𝑎𝑑𝑑𝑟𝑠 representing the candidate set, and the array size 𝑁. The array 𝑎𝑑𝑑𝑟𝑠
should contain at least 𝑊 congruent addresses, and thus 𝑁 ≥ 𝑊 . The algorithm iteratively finds
𝑊 congruent addresses by finding the tipping point at each iteration (Lines 5–16 in Figure 4.4).
Within each iteration, the algorithm tests in a loop if the first 𝑛 = ⌊(LB + UB)/2⌋ addresses from
𝑎𝑑𝑑𝑟𝑠 can evict 𝑇𝑎 (Line 9). The variables LB and𝑈𝐵 are then updated in a manner that LB always
represents the largest 𝑛 such that the first 𝑛 addresses cannot evict 𝑇𝑎 and UB always represents
the smallest 𝑛 such that the first 𝑛 addresses can evict 𝑇𝑎. Therefore, whenUB = LB+1, UB is the
tipping point of iteration 𝑖, denoted by 𝜏𝑖. Consequently, the 𝜏𝑖-th address of the array is a congruent
address. The algorithm then swaps the just-found congruent address with the 𝑖-th address in 𝑎𝑑𝑑𝑟𝑠
and proceeds to the next iteration (Line 15).
Before the binary search in the next iteration starts, LB is reset to 𝑖 − 1 (Line 6), as the first

𝑖 −1 addresses are the congruent addresses found in previous iterations and are thus excluded from
the search. In contrast, UB needs not to be reset to 𝑁, as the first UB addresses always contain
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1 // T_a: target address
2 // addrs: an array of candidate addresses
3 // N: size of the addrs array (N >= W)
4 size_t LB, UB = N;
5 for (size_t i = 1; i <= W; i++) {
6 LB = i - 1;
7 while (UB - LB != 1) {
8 n = (LB + UB) / 2;
9 if (TestEviction(T_a, addrs, n))
10 UB = n; // T_a can be evicted
11 else
12 LB = n; // T_a cannot be evicted
13 }
14 size_t tau_i = UB;
15 swap(addrs[i], addrs[tau_i]);
16 } // addrs[1]~addrs[W] form an eviction set

Figure 4.4: Pseudo code of our proposed algorithm. All array indexes start from 1. Parallel
𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛(𝑇𝑎, 𝑎𝑑𝑑𝑟𝑠, 𝑛) returns a boolean value that indicates whether the first 𝑛 candidate
addresses from array 𝑎𝑑𝑑𝑟𝑠 can evict the target 𝑇𝑎.
𝑊 congruent addresses due to the swapping. Finally, after 𝑊 iterations, the first 𝑊 addresses in
𝑎𝑑𝑑𝑟𝑠 form a minimal eviction set for 𝑇𝑎 (Line 16).
Example. Figure 4.5 demonstrates the algorithm with a nine-address candidate set (𝐶1, 𝐶2,… , 𝐶9)
and a target cache with associativity 𝑊 = 2. Initially, we set 𝑖 = 1, LB = 0, UB = 𝑁 = 9,
and 𝑛 = ⌊(UB + LB)/2⌋ = 4 (Step 1 ). Because the first 𝑛 = 4 addresses cannot evict 𝑇𝑎, we
set LB = 𝑛 = 4 and update 𝑛 to ⌊(UB + LB)/2⌋ = 6 (Step 2 ). With the updated 𝑛, the first
𝑛 = 6 addresses now can evict 𝑇𝑎, so we set UB = 𝑛 = 6 and update 𝑛 = 5 (Step 3 ). This
process is repeated until UB = LB + 1 = 6 (Step 4 ). At this point, 𝐶6 is found to be a congruent
address, which is saved to the front of the list by swapping it with 𝐶1. Then, we increment 𝑖 to 2,
set LB = 𝑖 − 1 = 1 without changing UB (Step 5 ), and repeat the binary search (Steps 5 – 7 ).
The algorithm finishes once 𝑊 congruent addresses are found (Step 8 ), which form a minimal
eviction set for 𝑇𝑎.
Backtracking mechanism. When the 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 returns a false-positive result due to environ-
mental noise, our algorithm can incorrectly setUB to a value smaller than 𝜏. As a result, the binary
search may incorrectly identify a non-congruent address as a congruent one. This erroneous state
is detected if the firstUB addresses cannot evict 𝑇𝑎 after the binary search for the iteration finishes.
To recover from this state, we gradually increase UB with a large stride until the first UB addresses
can evict 𝑇𝑎 and restart the binary search.
Comparison to existing algorithms. Unlike Prime+Scope, our algorithm uses parallel𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.
As discussed in Section 4.4.3, parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is at least an order of magnitude faster than
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Figure 4.5: Illustration of our proposed binary search-based algorithm (assuming𝑊 = 2). Blocks
with shaded pattern represent congruent candidate addresses.

sequential 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛. Therefore, our algorithm is faster than Prime+Scope.
Compared to group testing, both our algorithm and group testing can use parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.

Assume that we use the number of memory accesses as a proxy for execution time. Using our al-
gorithm, it takes 𝑂(log𝑁) parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 executions to find a tipping point, where 𝑁 is the
candidate set size. Since each parallel 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 needs to make𝑂(𝑁)memory accesses, it takes
𝑂(𝑁 log𝑁) accesses to find one congruent address. As we need to find𝑊 congruent addresses, the
end-to-end execution requires𝑂(𝑊𝑁 log𝑁) accesses. In contrast, group testing requires𝑂(𝑊 2𝑁)
accesses. Therefore, whether group testing or our algorithm makes fewer accesses, and conse-
quently executes faster, depends on the specific values of𝑊 and log𝑁.
As an intuitive comparison, the ratio of the number of accesses made by group testing over

our algorithm is estimated by 𝑂(𝑊/ log𝑁). Since we use 𝑁 = 3𝑈𝑊 (Section 4.4.2), we rewrite
the ratio as 𝑂(𝑊/ log (𝑈𝑊)). This suggests that in caches with high associativity (i.e., a large𝑊 ),
group testing tends to makemore accesses than our algorithm. This is supported by our experiments
in Section 4.5.3.
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4.5.3 Evaluating Our Optimizations

We evaluate group testing, Prime+Scope, and our binary search-based algorithm with candidate
filtering in both the Cloud Run and local environments. We use the samemethodology as the exper-
iment in Section 4.4.2, except for reducing the time limit of constructing one eviction set to 100ms
(because of candidate filtering). Each algorithm is evaluated in three scenarios: (1) SINGLESET,
where we construct a single eviction set for a randomly chosen SF set; (2) PAGEOFFSET, where we
construct eviction sets for all SF sets at a randomly chosen page offset; and (3) WHOLESYS, where
we construct eviction sets for all SF sets in the system. Our experiments include 88,350 and 1,000
measurements per algorithm in the cloud and local environments, respectively, in SINGLESET; 8,835
and 100 in PAGEOFFSET; and 1,767 and 20 in WHOLESYS.

Table 4.3: Eviction set construction effectiveness of various algorithms under SINGLESET.

Env. Metrics
SINGLESET

# Ev sets: Local=1, Cloud=1
GT GTOP PSBST BINS

Quiescent
Local

Succ. Rate 99.3% 99.5% 99.2% 99.9%
Avg. Time 15.2ms 14.7ms 14.7ms 14.1ms
Stddev Time 3.1ms 2.6ms 0.8ms 2.2ms
Med. Time 14.7ms 14.4ms 14.5ms 13.9ms

Cloud
Run

Succ. Rate 96.7% 97.7% 97.2% 98.1%
Avg. Time 28.8ms 27.2ms 33.2ms 26.6ms
Stddev Time 14.4ms 10.8ms 21.4ms 11.6ms
Med. Time 25.1ms 24.7ms 26.7ms 23.9ms

Table 4.4: Eviction set construction effectiveness of various algorithms under PAGEOFFSET. The
number of eviction sets may vary between local and cloud because the experiments use machines
with different number of slices.

Env. Metrics
PAGEOFFSET

# Ev sets: Local=704, Cloud=896
GT GTOP PSBST BINS

Quiescent
Local

Succ. Rate 98.6% 99.2% 99.4% 99.5%
Avg. Time 1.95 s 1.48 s 3.02 s 1.04 s
Stddev Time 0.72 s 0.17 s 2.48 s 0.16 s
Med. Time 1.77 s 1.43 s 1.39 s 1.00 s

Cloud
Run

Succ. Rate 95.6% 97.4% 98.4% 98.0%
Avg. Time 5.51 s 3.95 s 4.51 s 2.87 s
Stddev Time 2.62 s 1.90 s 2.72 s 1.58 s
Med. Time 4.94 s 3.52 s 3.85 s 2.53 s
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Table 4.5: Eviction set construction effectiveness of various algorithms under WHOLESYS. The
number of eviction sets may vary between local and cloud because the experiments use machines
with different number of slices.

Env. Metrics
WHOLESYS

# Ev sets: Local=45,056, Cloud=57,344
GT GTOP PSBST BINS

Quiescent
Local

Succ. Rate 99.0% 99.1% 99.5% 99.5%
Avg. Time 103.6 s 79.6 s 175.0 s 50.1 s
Stddev Time 16.1 s 7.9 s 72.7 s 5.5 s
Med. Time 96.8 s 76.9 s 185.6 s 48.9 s

Cloud
Run

Succ. Rate 88.1% 90.5% 91.7% 92.6%
Avg. Time 301.1 s 212.6 s 244.4 s 142.4 s
Stddev Time 63.0 s 52.1 s 58.9 s 34.8 s
Med. Time 290.1 s 200.4 s 229.6 s 134.2 s

Results. Tables 4.3–4.5 list the success rate and execution time of each algorithm under differ-
ent scenarios in both the Cloud Run and local environments. The execution time measures both
candidate filtering and address pruning. As we find that PS and PSOP have similar success rates
and execution times after applying candidate filtering, Tables 4.3–4.5 only show the one with the
shortest average execution time, and call it PSBST. We call our binary search-based algorithm BINS.
The SINGLESET scenario in Table 4.3 is directly comparable to the scenario in Table 4.2. Table 4.3

shows the effectiveness of candidate filtering on Cloud Run, as it leads to significantly shortened
execution times. For example, the average execution time of GTOP is reduced from 512ms to
27.2ms. The resulting success rate also increases substantially. Indeed, for GTOP, it goes from
56.0% to 97.7%.
Recall that the average execution time comprises both candidate filtering and addresses pruning.

In the SINGLESET scenario, it can be shown that candidate filtering on Cloud Run takes on average
22.3ms, which dominates the execution time. As a result, the average execution times are similar
across all algorithms. As will be shown in Section 4.5.3, the portion of the execution time spent on
candidate filtering drastically decreases when building numerous eviction sets in the PAGEOFFSET
and WHOLESYS scenarios.
Next, consider PAGEOFFSET (Table 4.4). All the algorithms experience increases in average exe-

cution times as they go from the local to the Cloud Run environments. Comparing group testing to
our algorithm on Cloud Run, we see that GT and GTOP take 92% and 38%more time to build evic-
tion sets on average, as we find that GT and GTOPmake 162% and 52%more memory accesses than
BINS. As for PSBST, it takes on average 57% more time than BINS, due to its use of the sequential
𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛.
The results for WHOLESYS (Table 4.5) are qualitatively similar to PAGEOFFSET, except for larger
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drops in success rates as we go from the local to the Cloud Run environments. Still, while the
average success rates of GT, GTOP, PSBST, and BINS on Cloud Run are 88.1%, 90.5%, 91.7%, and
92.6%, respectively, the medians are 96.7%, 98.5%, 99.4%, and 99.1%, respectively.
To summarize, the combination of candidate filtering and our binary search-based algorithm

offers significant performance improvements over the well-optimized state-of-the-art algorithms.
On Cloud Run, they reduce the time to construct eviction sets for all SF sets in the system from an
expected duration of 14.6 hours (Section 4.4.2) to a mere 2.4 minutes (last column of Table 4.5),
with a median success rate of 99.1%. These improvements make the LLC Prime+Probe attack in
the cloud feasible.

Overhead of Candidate Filtering. As indicated before, it takes 22.3ms to complete one candidate
filtering on Cloud Run. This time includes constructing one L2 eviction set and using it to filter
candidates. While this time dominates the execution time when constructing a single eviction
set (Section 4.5.3), the same filtered candidates can be reused to construct many eviction sets for
LLC/SF sets that are mapped to the same L2 set. For example, in the 28-slice Skylake-SP processor
used in our Cloud Run evaluation, constructing the 896 LLC/SF sets in the PAGEOFFSET scenario
requires only 16 candidate filtering executions, which takes 435ms on average. This execution
time makes up a small portion of the total execution time in PAGEOFFSET (2.87 s in Table 4.4).
In the WHOLESYS scenario, a naive process would build eviction sets for all 1,024 L2 sets and

execute candidate filtering 1,024 times. We optimize the process by exploiting the following prop-
erty of the L2: if addresses 𝐴 and 𝐵 are congruent in L2, then 𝐴′ = 𝐴+ 𝛿 and 𝐵′ = 𝐵 + 𝛿 are also
congruent in L2—as long as the 𝛿 is small enough such that 𝐴 and 𝐴′ belong to the same page, and
𝐵 and 𝐵′ belong to the same page [3, 4, 102].
Exploiting this property, we first construct 16 eviction sets for all L2 sets at page offset 0x0.

Then, we use each eviction set to generate a filtered candidate set at page offset 0x0. Finally, we
can derive a new filtered candidate set at page offset 𝛿 by adding 𝛿 to each candidate address of
the filtered candidate set at page offset 0x0. As a result, the WHOLESYS scenario requires only 16
L2 eviction set constructions and candidate filtering executions. The time of completing candi-
date filtering (435ms) is negligible compared to the total execution time in WHOLESYS (142.4 s in
Table 4.5).

Other Intel Server Platforms and Target Caches. As discussed in Section 4.5.2, group test-
ing tends to incur a higher execution overhead over our binary search-based algorithm when the
cache associativity increases. To illustrate this trend, we measure the performance of eviction set
construction on Ice Lake-SP, which features caches with higher associativity than in Skylake-SP.
Specifically, Ice Lake-SP has a 16-way SF and a 20-way L2 cache, whereas Skylake-SP has a
12-way SF and a 16-way L2 cache.
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Because we do not see Ice Lake-SP being used on Cloud Run, we measure the performance on
local quiescent Skylake-SP and Ice Lake-SP machines. The Skylake-SP machine utilized is the
same as in prior experiments. The Ice Lake-SP machine uses an Intel Xeon Gold 5320, which has
26 LLC/SF slices. For each machine and algorithm, we measure the time to construct a single SF
or L2 eviction set 1000 times. Candidate filtering is enabled for SF eviction set construction, but
its time is not included in our measurements.
First, we consider constructing eviction sets for the SF. GT, GTOP, and BINS take, on average,

2.23ms, 1.77ms, and 1.17ms, respectively, to construct a single eviction set for the 12-way SF
of Skylake-SP. The same process takes GT, GTOP, and BINS on average 3.81ms, 3.07ms, and
1.68ms, respectively, for the 16-way SF of Ice Lake-SP. As we go from Skylake-SP to Ice Lake-
SP, the ratio GT/BINS and GTOP/BINS changes from 1.91 and 1.51 to 2.27 and 1.83, respectively.
Similarly, GT, GTOP, and BINS take, on average, 2.49ms, 1.90ms, and 1.33ms, respectively,

to construct a single eviction set for the 16-way L2 of Skylake-SP. The same process takes GT,
GTOP, and BINS on average 14.48ms, 8.16ms, and 2.28ms, respectively, for the 20-way L2 of Ice
Lake-SP. As we go from Skylake-SP to Ice Lake-SP, the ratio GT/BINS and GTOP/BINS changes
from 1.87 and 1.43 to 6.35 and 3.58, respectively.

4.6 MONITORING MEMORY ACCESSES & IDENTIFYING TARGET CACHE SETS

Eviction set construction is the first step of an end-to-end LLC attack after co-location (STEP 2
in Table 2.1). In this section, we improve the remaining steps with two new techniques. First, Sec-
tion 4.6.1 introduces Parallel Probing, which enables the monitoring of victim memory accesses
with high time resolution. This technique optimizes STEP 3 (identify target sets) and STEP 4 (ex-
filtrate information) in Table 2.1 for the noisy cloud environment. Second, Section 4.6.2 leverages
Power Spectral Density [182] from signal processing to easily identify the victim’s target cache
set. This technique optimizes STEP 3 in Table 2.1 for the noisy cloud environment.

4.6.1 Parallel Probing for Memory Access Monitoring

Given a cache set, the attacker can detect memory accesses to that set with Prime+Probe (Sec-
tion 2.2.2). It is vital that both prime and probe latencies are short. A short probe latency enables
the attacker to monitor when accesses occurs at a high time resolution [159]. A short prime latency
allows the attacker to quickly prepare the monitored cache set for detecting the next access. In
a noisy cloud environment, where a cache set may be frequently accessed by processes of other
tenants, failure to prime the set in a timely manner can increase the chance of missing the victim’s
accesses.
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To minimize the probe latency, Prime+Scope [159] primes a specific line from the eviction set
to become the eviction candidate (EVC), which is the line to be evicted when a new line needs
to be inserted into the set. This method enables the attacker to check only if the EVC remains
cached. Further, since the EVC can be cached in L1, the probe latency becomes minimal, leading
to a high time resolution. However, this comes at the cost of using a slower and more complex
priming pattern to prepare the replacement state [159], which can reduce monitoring effectiveness
in a noisy environment.
Our solution. We discover that, due to the high memory-level parallelism supported by modern
processors, simply probingwith overlapped accesses all the𝑊 lines of a minimal eviction set (Sec-
tion 4.2.1) results in a probe latency only slightly higher than that of Prime+Scope. The advantage
of this parallel probing method is that it allows us to prime the cache set without preparing any
replacement state. Therefore, parallel probing works irrespective of the replacement policy used
by the target cache, which can be unknown or quite complex [133, 183, 184, 185].

Evaluating Parallel Probing. We conduct a covert-channel experiment similar to the one done
by Purnal et al. [159] to evaluate two different Prime+Scope strategies and our parallel probing. In
the experiment, we create a sender and a receiver thread that agree on a target SF set. The sender
thread accesses the target set at a fixed time interval, while the receiver thread uses Prime+Scope
or parallel probing to detect accesses to the target set. For a sender’s access issued at time 𝑡, if the
receiver detects an access at time 𝑡′ ∈ (𝑡, 𝑡 + 𝜖), where 𝜖 is an error bound, we say that the sender’s
access is detected by the receiver. We use 𝜖 = 500 cycles (or 250 ns).
We conduct this experiment on Cloud Run with varying access intervals. In each experiment,

the sender thread accesses the target SF set 2,000 times. We measure the percentage of the sender’s
accesses that are detected by the receiver—i.e., the detection rate. We also collect the probe and
prime latencies and exclude outliers that are above 20,000 cycles, as an interrupt or context switch
likely occurred during the operation. The experiment is done on different hosts on different days
and at different times of day. We repeat the experiment 10 times on each host, totaling 4,070
measurements.
For Prime+Scope, we evaluate two prime strategies discussed by Purnal et al. [159]. The first

strategy (PS-FLUSH) is to load, flush, and sequentially reload the eviction set. The second strategy
(PS-ALT) is to perform an alternating pointer-chase using two eviction sets. More details of these
strategies is found in [159]. For our parallel probing technique (PARALLEL), we use a prime strategy
that simply traverses the eviction set 12 times with overlapped accesses.
Table 4.6 lists the prime and probe latencies of each strategy. The table reveals that the average

probe latency of PARALLEL is only 24 cycles higher than that of Prime+Scope, yet PARALLEL exhibits
a substantially lower prime latency.
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Table 4.6: Prime and probe latencies of two Prime+Scope strategies and parallel probing on Cloud
Run. The host processors’ frequency is 2GHz.

Strategy Prime Latency
(mean ± std. deviation)

Probe Latency
(mean ± std. deviation)

PS-FLUSH 6,024 ± 990 cycles 94 ± 0.7 cyclesPS-ALT 2,777 ± 735 cycles
PARALLEL 1,121 ± 448 cycles 118 ± 0.7 cycles
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Figure 4.6: Detection rate of each monitoring strategy with various access interval. The x-axis
employs a logarithmic scale. The error bars represent the standard deviations.

The benefit of this reduced prime latency is depicted in Figure 4.6, which shows the average
detection rate for different access intervals. With a 2k-cycle access interval, PARALLEL achieves
an average detection rate of 84.1%, while PS-FLUSH and PS-ALT reach average detection rates of
15.4% and 6.0%, respectively. The low detection rates of PS-FLUSH and PS-ALT are primarily due
to their long prime latencies.
Evenwhen the access interval is sufficiently long for all strategies to complete priming, PARALLEL

still maintains the highest detection rate. With a 100k-cycle access interval, PARALLEL, PS-FLUSH,
and PS-ALT attain average detection rates of 91.1%, 82.1%, and 36.9%, respectively. To understand
why, we inspected a random subset of the detected memory access traces. In PS-FLUSH, we observe
that missed detections mainly result from noisy accesses made by other tenants to the monitored
cache set, occurring just before the sender’s access. After the receiver detects the noisy access, it
is unable to finish priming before the sender accesses the set.
In PS-ALT, although the receiver initially detects the sender’s accesses, it often later fails to prime

the monitored line as the EVC, leading to many missed detections. We believe this might be due
to the SF replacement states being altered by background accesses, resulting in failing to prepare
the EVC.

4.6.2 Power Spectral Density for Set Identification

To identify the target cache sets (STEP 3 in Table 2.1), the attacker can collect a short memory
access trace from each potential target cache set while the victim is executing. The attacker then

62



applies signal processing techniques to determine whether a given memory access trace has any
characteristic that resembles what is expected from a given target cache set. Prior work has consid-
ered characteristics such as the number of accesses in the trace or the access pattern [3, 4]. These
characteristics can be hard to identify in the cloud due to the high level of environmental noise.
Our solution. Our insight is that a victim program’s accesses to the target cache set are often
periodic in a way that the attacker expects, while this is not the case for the background accesses.
Therefore, we propose to process the access traces in the frequency domain, where it is easier to spot
the expected periodic patterns. Specifically, we estimate the Power Spectral Density (PSD) [182]
of each memory access trace using Welch’s method [168]. PSD measures the “strength” of the
signal at different frequencies [182]. If the access trace is collected from the target set where the
victim makes periodic accesses, we will observe peaks in the trace’s PSD around the expected
victim-access frequencies. If, instead, the trace is not collected from the target set, it will have a
PSD without the expected peaks.
Example. To demonstrate our proposal, we collect an access trace from a target SF set of a vic-
tim program and another trace from a non-target SF set, and compare the PSD of both traces. In
this example, the victim executes an ECDSA implementation [163] that will be described in Sec-
tion 4.7.1. In this implementation, the victim processes each individual secret bit in a loop. The
victim accesses the target SF set when an iteration starts and, if the secret bit being processed in
the iteration is zero, it also accesses the set in the midpoint of the iteration. The execution of each
iteration takes a mostly fixed time duration of about 9,700 cycles on a 2GHz Skylake-SP machine
on Cloud Run. Because of the access that may occur in the midpoint of an iteration, the victim’s
accesses to the target set have a period of about 4,850 cycles. Therefore, we expect to observe a
peak in the PSD at the frequency of 𝑓 = 2GHz/4,850 ≈ 0.41MHz.
The top plot of Figure 4.7 shows two 100µsmemory access traces collected on a 2GHz Skylake-

SP machine on Cloud Run. The blue dots at the top are the observed accesses to the target SF set;
while the orange dots at the bottom are the observed accesses to the non-target SF set. For both
traces, we see similar numbers of accesses: 50 accesses to the target set and 48 to the non-target
set. It is difficult to interpret these two patterns.
The bottom plots show the PSD of the access traces collected from the target set (left) and the

non-target set (right). In the PSD for the target set, we clearly see a peak at the base frequency
𝑓 = 0.41MHz and at multiples of 𝑓. In contrast, in the PSD for the non-target set, we see no
significant peaks at the expected frequency.
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Figure 4.7: The top plot shows traces of memory access to the target SF set (top trace) and the
non-target SF set (bottom trace) collected on Cloud Run. The two bottom plots show the power
spectral density of the two traces.

4.7 DEMONSTRATING AN END-TO-END ATTACK

In this section, we demonstrate the combination of our techniques discussed in Sections 4.5 and 4.6
by mounting an end-to-end, cross-tenant attack in Cloud Run. Our demonstration uses a vulnera-
ble implementation of Elliptic Curve Digital Signature Algorithm (ECDSA) [186] from OpenSSL
1.0.1e [163] as an example victim. While this implementation is deprecated, we use it solely as a
vehicle to illustrate our techniques.

4.7.1 Attack Outline

The vulnerable ECDSA implementation that we target uses theMontgomery ladder technique [187]
to compute on the nonce 𝑘, an ephemeral key that changes with each signing. The attacker can
derive the private key used for signing by extracting some bits of 𝑘 across multiple signing opera-
tions [188, 189, 190, 191, 192, 193, 194]. Thus, the attacker’s goal is to learn as many bits of 𝑘 as
possible. Our demonstration targets curve sect571r1, which uses a 571-bit nonce.
Similar to prior work [3, 15, 189], we assume the attacker knows thememory layout of the library

used by the victim. This assumption generally holds, as victims often install and use libraries whose
binaries are publicly released. Moreover, as we are targeting a victim web service (Section 4.3),
we assume the library is loaded once at the victim container startup time and uses the same VA-PA
mapping throughout the container’s lifetime.
Figure 4.8a shows a simplified version of the Montgomery ladder implementation [163] that

we are targeting. The code iterates through each bit of the nonce 𝑘 and calls functions MAdd and
MDouble with different arguments depending on the value of the bit. This implementation is re-

64



for bit in k {
if (bit) {

MAdd(x1,z1,x2,z2); // MAdd1
MDouble(x2,z2); // MDouble1

} else {
MAdd(x2,z2,x1,z1); // MAdd0
MDouble(x1,z1); // MDouble0

}
// ...

}

(a) Simplified code snippet.

// ...
if (bit)

MAdd1
MDouble1

MAdd0
MDouble0

Y

①

②

③

(b) Memory layout.

Figure 4.8: Simplified vulnerable code snippet (left) and its memory layout in VA space (right).
Each thick vertical line represents a cache line. The control-flow edge that exits the loop is omitted
in the right figure.

silient to end-to-end timing, as it executes the same sequence of operations regardless of the bit
value. However, it has secret-dependent control flow. Since each side of the branch resides on a
different cache line, the program fetches different cache lines based on the value of the nonce bit.
As a result, the attacker can infer each individual nonce bit by monitoring code fetch accesses to
these cache lines tracked by the SF.
Figure 4.8b shows the memory layout of the vulnerable code snippet in VA space, compiled with

the default build options and static linkage. Each thick vertical line represents a different cache line.
Given this layout, one approach is to monitor accesses to cache line 2 . Line 2 is used by the if
statement, which is executed at the beginning of an iteration. As a result, the code fetch accesses
made by the if statement serve as a “clock” and mark the iteration boundaries.
Cache line 2 is also utilized by the true direction of the branch. When the control flow takes the

true direction and MAdd1 is executing, Prime+Probe will evict line 2 . As the control flow returns
from MAdd1 and is about to call MDouble1, the program needs to fetch line 2 , creating one access
in the midpoint of the iteration. Then, while MDouble1 is executing, Prime+Probe evicts cache
line 2 again, triggering a code fetch access when returning from MDouble1 and executing the if
statement.
Therefore, we observe two accesses to line 2 per iteration if the bit value is 1, and one access

to line 2 if the bit value is 0. It should be noted that, although line 2 slightly overlaps with
the beginning of the else block, we will not observe an extra access if the bit value is 0. This is
because the overlapped region is executed immediately after the if statement, and the interval is
too brief to be detected.
In practice, when we collect a trace of the memory accesses to the target SF set to which cache

line 2 maps, we also want to collect the ground truth of nonce bit 𝑘 and iteration boundaries for
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Figure 4.9: A snippet of memory accesses to the target SF set collected on Cloud Run. Dots are
detected accesses, and crosses are the nonce bit 𝑘 values (1 or 0).

validation purpose. This requires some slight instrumentation of the binary, a practice also seen in
prior work [8, 16]. The instrumentation is purely for validation purpose and it is not necessary for
the attack. However, due to the instrumentation, the layout of the code changes, and it is easier
to monitor the cache line corresponding to the else direction. The reasoning is similar to the
explanation for line 2 , but we now observe the additional memory access at the midpoint of an
iteration when the bit value is 0, not 1.
We collect the trace of memory accesses to the target SF set (using the techniques of Section 4.6),

the ground truth of nonce bit 𝑘, and iteration boundaries on Cloud Run, while the victim code is
executing. Figure 4.9 shows a short snippet of the trace that happens to contain no noisy accesses
made by other tenants. In the figure, thick dashed vertical lines represent the ground truth for
iteration boundaries, and thin dashed vertical lines represent halves of iterations. Dots are detected
accesses, and crosses are the nonce bit 𝑘 values (1 or 0). Iterations where bit 𝑘 value is 0 have two
accesses. From the trace, we can easily read the nonce bits.
It takes only about 9,700 cycles on Cloud Run to execute one iteration of the Montgomery ladder

loop that we target. Thus, when the nonce bits have a sequence of continuous zeros, the attacker
needs to detect a sequence of accesses that are 4,850 cycles apart. As shown in Table 4.6, the prime
pattern of Prime+Scope’s [159] PS-FLUSH takes on average 6,024 cycles to complete, while the
PS-ALT pattern has a low detection rate (Figure 4.6). As a result, the Prime+Scope versions either
frequently miss memory accesses or report an access as occurring at a time different from when the
actual access occurs. In contrast, our Parallel Probing strategy takes on average only 1,121 cycles
to execute (Table 4.6) and thus accurately detects the memory accesses in ECDSA.

4.7.2 Finding the Target Cache Set with PSD

We apply our PSD method to identify the victim’s target SF set on Cloud Run. To obtain the
ground truth, we run the victim and attacker programs in the same container. The attacker mmaps
the victim program so that the attacker can access the target line. Then, when the attacker identifies
an eviction set that might correspond to the target SF set, the attacker can validate it by checking
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whether the eviction set indeed evicts the target line.
Scanning strategy. Since the attacker knows the VA of the target cache line of the ECDSA victim,
they only need to construct eviction sets for SF sets at the page offset of the target line and scan
only those sets—i.e., it is the PAGEOFFSET scenario. To approximate the WHOLESYS scenario, we
also measure the effectiveness of our approach by scanning cache sets at every page offset in a
random order.
The ECDSA victim program spends only about 25% of its execution time running the vulnerable

code. Therefore, there is a high chance that the attacker cannot detect the target set, as they may
collect the traces while the victim is not executing the vulnerable code—a problem known as de-
synchronization. Hence, the attacker repeatedly scans all possible sets until detecting the target
set or timeout. We set the timeouts for PAGEOFFSET and WHOLESYS to 60 s and 900 s, respectively.
Time spent on eviction set construction is not counted towards the timeout.

Scanner implementation. To automatically detect the target set with the PSD method, we train
a supporting-vector machine (SVM) to predict if a trace is from the target set based on the trace’s
PSD. The SVMmodel uses a polynomial kernel and is trained using scikit-learn [195]. To train the
model, we collect 2,266 traces from monitoring the target set and 120,103 traces from non-target
sets from different Cloud Run hosts. We randomly withhold 30% of the traces as the validation set
and use the remaining traces to train the model. Our model has a 1.02% false-negative rate and a
0.01% false-positive rate on the validation set.
During an attack, the attacker program first builds eviction sets for the SF sets at the target page

offset or in the whole system. It then collects a 500µs access trace from each SF set. In our
implementation, the attacker program running on Cloud Run needs to stream access traces back to
a local machine to be processed by a Python program. To reduce the data transmission overhead,
the attacker program performs a preliminary filtering and only sends back traces containing 50-
400 accesses. This filtering range is empirically determined based on the victim’s behavior and the
access trace length. For every filtered trace, the local Python program computes its PSD and uses
the SVM model to predict if it is from the target set.
Note that our PSD method may falsely identify a non-target set as a target set. This can occur

when scanning an SF set corresponding to the data or instruction accesses performed by MAdd or
MDouble, as those accesses may occur at a frequency that is similar to that of the target cache line.
To filter out these false positive results, we attempt to extract the nonce bits from a positive access
trace using the method detailed in Section 4.7.3. If we fail to extract enough nonce bits, or if the
extracted “nonce bits” are heavily biased towards 0 or 1, we disregard this access trace and continue
searching. As we find that the risk of false positives is low for PAGEOFFSET, we only apply this
technique to WHOLESYS.
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Evaluation setup. We conduct this experiment on Cloud Run at different times of day, totaling 357
measurements for PAGEOFFSET and 207 measurements for WHOLESYS. For WHOLESYS, we deem
the scan successful if it manages to locate the cache set accessed by the either side of the branch,
as accesses made by either side can disclose the nonce 𝑘.
Results. Table 4.7 lists the key metrics of finding the target cache set using the PSD method.
Given our timeout configurations, 94.1% and 73.9% of the scanning attempts find the target set
under PAGEOFFSET andWHOLESYS, respectively. The lower success rate underWHOLESYS is mainly
because we can only scan each SF set fewer times within the timeout period, leading to more
failures due to the de-synchronization problem. Averaged among successful scans, it takes 6.1 s
and 179.7 s to find the target set under PAGEOFFSET and WHOLESYS, respectively. Finally, we scan
from 762 sets/s to 831 sets/s. The scanning speed can be improved by using multiple threads to
scan cache sets in parallel.

Table 4.7: Performance of identifying the target cache set.

Metric PAGEOFFSET WHOLESYS
Success Rate 94.1% 73.9%
Average Success Time 6.1 s 179.7 s
Std. Deviation of Success Time 6.9 s 177.4 s
95% Percentile Success Time 16.1 s 546.6 s
Average Scan Rate 831 sets/s 762 sets/s

4.7.3 End-to-End Nonce Extraction

Putting all the pieces together, we demonstrate end-to-end, cross-tenant nonce 𝑘 extractions on
Cloud Run. In this demonstration, the attacker first successfully co-locates their attack container
with the victim container [101]. Then, the attacker builds the eviction sets and finds the target set
using the PSD method, while sending requests to trigger victim executions. Once the target set
is identified, the attacker triggers the victim execution 10 more times to steal the different nonces
used in each execution.
To process the memory access trace, we train a random forest classifier [195, 196] to predict if a

detected memory access corresponds to an iteration boundary. To filter out false-positive boundary
predictions, we consider only boundary pairs that are 8𝑘 to 12𝑘 cycles apart, as this is the duration
variation that we expect from a single iteration on these hosts. From each pair of predicted neigh-
boring boundaries, we recover the nonce bit in the iteration by checking if there is an extra access
in the middle of the iteration.
We attempt end-to-end nonce 𝑘 extractions under the PAGEOFFSET scenario on 52 pairs of co-

located containers on Cloud Run. We identify a potential target set and observe a signal in 47 of
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them. Within the 470 traces collected from these 47 victims, we extract an average of 68% (or a
median value of 81%) of the nonce bits. Among these recovered bits, our average bit error rate is
3%. The full attack, which includes constructing eviction sets, identifying the target SF set, and
collecting 10 traces, takes an average of 19 seconds.

4.8 RELATED WORK

Side-channel attacks in cloud. Ristenpart et al. [37] examined the placement of virtual machines
on physical hosts within AWS and developed techniques to achieve co-location. Zhang et al. [17]
employed Flush+Reload for a cross-tenant attack on a Platform-as-a-Service (PaaS) cloud. How-
ever, Flush+Reload is no longer feasible in modern clouds [36, 99]. İnci et al. [15] in 2015 con-
ducted a Prime+Probe attack on AWS EC2 to extract RSA keys, using a reverse-engineered LLC
slice hash function and huge pages to build eviction sets. Their attack is long running, relies on
huge pages, and targets an inclusive LLC—all of which are incompatible with modern cloud envi-
ronments.
Mitigations to cache-based side-channel attacks. Defenses can be broadly categorized into two
types. The first type, partition-based solutions [53, 54, 55, 57, 59, 60, 61, 197], blocks attacks by
partitioning the cache between different tenants. However, this approach often requires complex
hardware design and results in high execution overhead. The second type, randomization-based
defenses [46, 47, 48, 49, 50, 52, 198, 199, 200], focuses on obfuscating the victim’s cache usage.
While this method offers high performance, it fails to provide comprehensive security guarantees.
Eviction set construction. Algorithms for constructing eviction sets have received significant at-
tention [3, 51, 133, 167, 170, 201]. However, most approaches are developed and evaluated in
a quiescent local environment. Besides the group testing [47, 133] and Prime+Scope [159] algo-
rithms discussed in Section 4.2.1, Prime+Prune+Probe (PPP) [51] exploits the LRU replacement
policy to defeat randomized caches by minimizing memory accesses. CTPP [170], which is con-
current to our work, builds on PPP by integrating it with Prime+Scope. Based on the evaluation in
CTPP [170], the success rates of both PPP and CTPP fall to almost zero when a single memory-
intensive SPEC 2006 benchmark [202], such as mcf, runs in the background. Using the average
LLC access rate as a metric, the cache activity caused by mcf is only about 10% of what we ob-
served on Cloud Run. Section 4.10 offers a more detailed discussion of eviction set construction
algorithms that exploit cache replacement policy. Lastly, Guo et al. [201] exploited a non-temporal
prefetch instruction to accelerate eviction set construction on Intel inclusive LLCs, but found this
technique inapplicable to Intel non-inclusive LLCs [201].
Prime+Probe techniques. Prior arts [157, 203] also used parallel probing in their Prime+Probe
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implementations [204, 205]. However, to our knowledge, we are the first to study the parallel prob-
ing strategy to strike a good balance between probe and prime latency. Oren et al. [102] processed
memory access traces in the frequency domain to fingerprint websites.

4.9 CONCLUSION

In this chapter, we presented an end-to-end, cross-tenant LLC Prime+Probe attack on a vul-
nerable ECDSA implementation in the public FaaS Google Cloud Run environment. We showed
that state-of-the-art eviction set construction algorithms are ineffective on Cloud Run. We then
introduced L2-driven candidate address filtering and a binary search-based algorithm for address
pruning to speed-up eviction set construction. Subsequently, we introduced parallel probing to
monitor victim memory accesses with high time resolution. Finally, we leveraged power spectral
density to identify the victim’s target cache set in the frequency domain. Overall, we extracted a
median value of 81% of the secret ECDSA nonce bits from a victim container in 19 seconds on
average.
Ethical considerations. We limited our attempts to exfiltrate information from only victims un-
der our control. We monitored just one SF set of the host at a time, thus minimizing potential
performance interference with other tenants.

4.10 APPENDIX SECTION: COMPARISON TO EVICTION SET CONSTRUCTION
ALGORITHMS EXPLOITING REPLACEMENT POLICY

One possible solution to defend against cache-based side-channel attacks is to use randomized
caches [46, 47, 52], which randomly but deterministically map physical addresses to cache sets
with the option of refreshing the mapping periodically [51]. To evaluate the security of randomized
caches, many prior works [47, 51, 170] discussed efficient algorithms that aim to reduce the number
of memory accesses to construct an eviction set. These efficient algorithms allow the construction
of an eviction set before the mapping is refreshed, thus enabling cache side-channel attacks in
randomized caches. For example, Qureshi et al. [47] proposed algorithms that exploit thrashing
behaviors in replacement policies such as LRU and RRIP [184].
To understand how to exploit thrashing behavior to build an eviction set, Figure 4.10a shows

a 4-way cache using the LRU replacement policy. In this example, we have seven candidate ad-
dresses ({𝐶1, ..., 𝐶7}) that are mapped to three different cache sets. Set 1 is completely filled with
the candidate addresses while the remaining sets are underfilled. The goal in this example is to
build an eviction set for a target address 𝑇𝑎 that is mapped to the target Set 1. This example is
similar to the one used by Qureshi et al. [47].
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(b) Both the target set and a non-target
set are overflowed by the candidate set.

Figure 4.10: Different candidate sets for discussing eviction set construction algorithms.

To build an eviction set for 𝑇𝑎, the algorithm finds addresses that are congruent with 𝑇𝑎 by ex-
ploiting the thrashing behavior of LRU. Specifically, the algorithm primes addresses 𝐶1, 𝐶2, ..., 𝐶7
sequentially. Then it accesses 𝑇𝑎 to evict 𝐶2, the oldest line in Set 1 after priming. After that,
the algorithm times the accesses to (or probes) 𝐶1, 𝐶2, ..., 𝐶7 sequentially and records addresses
that suffer cache misses. Since the probing accesses have the same order as the priming accesses,
every probing access to a congruent address that maps to Set 1 will miss in the cache due to thrash-
ing. Meanwhile, accesses to all the non-congruent addresses will hit in the cache. As a result, the
addresses that suffered cache misses during the probing are the congruent addresses that form a
minimal eviction set for 𝑇𝑎. This algorithm is efficient, as it requires only 2𝑁 + 1 accesses, where
𝑁 is the size of the candidate set. For caches that use RRIP [184], which is common in modern Intel
processors [206], Qureshi et al. [47] proposed to prime the candidate addresses by accessing each
address twice to trigger the trashing behavior. As these algorithms find eviction sets by exploiting
the thrashing, we refer to this class of algorithms as thrash-exploiting algorithms hereafter.
Note that both the discussion in Figure 4.10a and the discussion in [47] make a simplification

that the target set (Set 1 in Figure 4.10a) is completely filled by the candidate set while other non-
target sets are underfilled. Acknowledging that such a simplification is appropriate when evalu-
ating the security of randomized caches, where an idealized powerful adversary is often assumed,
there are many challenges of using the thrash-exploiting algorithms in practice. Several follow-up
works [51, 170, 207] pointed out that the candidate set often overflows not only the target set but
also many non-target sets, as illustrated in Figure 4.10b. Traversing a candidate set like the one
in Figure 4.10b will result in many cache misses due to self-conflicts, such as when probing non-
congruent addresses {𝐶8, ..., 𝐶12} in Figure 4.10b. As a result, the thrash-exploiting algorithm fails
to generate a minimal eviction set for 𝑇𝑎 by including non-congruent addresses {𝐶8, ..., 𝐶12} in the
eviction set.
To overcome the challenge of self-conflicting candidate sets, Purnal et al. proposed a new algo-

rithm named Prime+Prune+Probe [51, 207] that introduces an additional pruning step to remove
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self-conflicting addresses. From a high level, the pruning step repeatedly primes and probes the
candidate set and discards any address that suffered a cache miss during probing. This iterative
pruning process is repeated until no cache misses are observed during probing. Consider again
Figure 4.10b, the pruning step will observe misses when probing 𝐶7 and 𝐶12, as they do not fit into
the cache. As a result, 𝐶7 and 𝐶12 are removed from the candidate set, resulting in a candidate set
that is not self-conflicting.
While not discussed in [51, 207], the pruning step must traverse the candidate set in such a way

that completely avoids thrashing or anti-thrashing. Otherwise, we may find that more than one
address suffered a cache miss in the target Set 1 during probing. As a result, we will over-prune
more than one address from the target Set 1. When over-pruning occurs, the candidate set contains
less than 𝑊 = 4 congruent addresses, and the eviction set construction will fail. Despite the
importance of anti-thrashing during pruning, how anti-thrashing can be achieved is not discussed by
Purnal et al. [51, 170]. Lastly, while Purnal et al. improved the idea of thrash-exploiting algorithms,
their discussion and implementation are limited to a simulated system instead of a commercial
processor.1

To address the challenge of over-pruning, a follow-up work [170], which is concurrent to the
work in this chapter, proposed a new algorithm named Conflict Testing and Probe+Prune (CTPP).
The high-level idea of CTPP is to use Prime+Scope for the pruning step. Specifically, CTPP locates
the 𝑊 -th congruent address in the candidate set with Prime+Scope. Then CTPP discards all the
candidate addresses that are after the𝑊 -th congruent address. As a result, the remaining addresses
are guaranteed not to self-conflict in the target set. Therefore, one can then use a pruning approach
that is not anti-thrashing to prune the remaining addresses. This is because any over-pruning now
can only occur in non-target sets, which will not fail the eviction set construction process.
According to the evaluation by Xue et al. [170], CTPP achieves good performance in a local

quiescent environment. However, the success rates of both CTPP and Prime+Prune+Probe fall
to almost zero when a single memory-intensive benchmark, such as mcf, runs in the background.
Using the implementation [208] provided by Xue et al., we independently evaluate CTPP on both
a local 22-slice Skylake-SP machine and Cloud Run with a setup similar to Section 4.4.2. After
1,000 eviction set constructions in the local environment, CTPP shows a success rate of 37.2%
with an average execution time of 2.6ms. Compared with the local quiescent results using other
algorithms in Table 4.2, CTPP has the best performance, but the least success rate. In the Cloud
Run environment, we run CTPP on 118 hosts and construct 100 eviction sets on each host. On

1To the best of our knowledge, at the time of the work in this chapter is done, there was no implementation of
thrash-exploiting algorithms that works on commercial processors. As was shown by a follow-up work [170] that
is concurrent to the work in this chapter, it is not trivial to implement thrash-exploiting algorithms even in a local
quiescent environment. As a result, the main experiments in this chapter did not consider thrash-exploiting algorithms
as practical baselines.
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average, CTPP has a success rate of merely 1.3% and an execution time of 15.1ms. Our results
suggest that CTPP, the state-of-the-art thrash-exploiting algorithm, is yet to be practical in the
noisy cloud environment. Our observation in Cloud Run is consistent with the results obtained by
Xue et al. [170] in a local noisy environment with mcf running. Using the average LLC access
rate as a metric 4.4.3, the cache activity caused by mcf is only about 10% of what we observed on
Cloud Run. We refer the reader to [170] for more details on CTPP and its noise susceptibility.

4.10.1 Practical Challenges of Thrash-Exploiting Algorithms

Without being tied to CTPP or Prime+Prune+Probe, we identified several practical challenges
in using the thrash-exploiting algorithms. Some of the challenges are related to the noise suscepti-
bility of these algorithms, while others are related to implementation. As mentioned earlier, these
practical challenges can be ignored when evaluating the security of randomized caches, where we
assume an idealized attacker, but they need to be addressed for a practical attack in the noisy cloud.

Noise tolerance of CTPP [170] and Prime+Prune+Probe [51]. We discuss the noise tolerance
of the CTPP and Prime+Prune+Probe algorithms. The first negative effect of background cache
accesses made by other running applications is that these accesses can destroy the carefully primed
cache replacement policy states, leading to no thrashing or no anti-thrashing behaviors. As a result,
during the pruning step, Prime+Prune+Probe can over-prune the candidate set due to failed anti-
thrashing and CTPP can over-prune the candidate set because Prime+Scope stops before the𝑊 -th
congruent address is found (similar to how Prime+Scope fails in the cloud, as discussed in Sec-
tion 4.4.2). Similarly, if thrashing fails, the probing step will not collect all the congruent addresses,
leading to the failure of constructing an eviction set.
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Figure 4.11: An illustration of the priming and probing steps being affected by noisy accesses to
multiple cache sets. The left side shows the cache state before priming and probing. The right
side shows the cache being filled by cache lines brought by noisy accesses (𝑁1, ..., 𝑁4) and many
non-congruent addresses suffered a cache miss during probing.

Now, assuming that thrashing and anti-thrashing can occur perfectly and we can obtain a pruned
candidate set without over-pruning, the remaining priming and probing steps are still highly vul-
nerable to noise. This is because these steps can be affected by noisy accesses to all the cache
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sets to which some candidate addresses are mapped. Consider the example in Figure 4.11. The
left side of the figure shows a candidate set that is perfectly pruned and the target Set 1 contains
exactly𝑊 = 4 congruent addresses. These candidate addresses span across Sets 0–3. The desired
outcome in this example is that accesses to every line from the target Set 1 miss in the cache dur-
ing the probing, while accesses to lines from non-target sets all hit in the cache. However, this is
unlikely to happen due to the noise, as all Sets 0–3 will experience noisy accesses made by other
running applications. These noisy accesses can evict addresses in non-target sets and make them
miss in the cache during the probing. The right side of Figure 4.11 illustrates a possible prob-
ing result under the noise. Candidate addresses that are missed in the cache are marked with a
“blast” sign. As the figure shows, the cache is now filled by cache lines brought by noisy accesses
(𝑁1, ..., 𝑁4) and we observe cache misses in both the target set and non-target sets. As a result,
the algorithm will include many non-congruent addresses in the eviction set, failing to construct a
minimal eviction set. In contrast, algorithms that use the 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 primitive are more resilient
to noise. This is because 𝑇𝑒𝑠𝑡𝐸𝑣𝑖𝑐𝑡𝑖𝑜𝑛 is affected by noisy accesses to only the target set, while
thrash-exploiting algorithms are affected by noisy accesses to hundreds if not thousands of cache
sets to which candidate addresses are mapped.

Priming cache replacement policy states. Thrash-exploiting algorithms require careful priming
of cache replacement policy states either to trigger thrashing or completely avoid thrashing. In ad-
dition to the fact that noisy accesses can destroy carefully primed cache states, crafting a thrashing
or anti-thrashing access sequence for caches using complex replacement policies like RRIP [184],
which is widely used by Intel processors [206], is also challenging. Since 2-bit RRIP [184] is a
common replacement policy used by the LLCs of modern Intel processors [206], we focus on 2-bit
RRIP in the following discussion. Using a 2-bit RRIP policy, a cache line can have an age from
0 to 3, with 0 being the youngest and 3 being the oldest [184, 206]. Upon a cache miss, the cache
set is searched and a line with age 3 will be evicted. A 2-bit RRIP policy is also called Quad-age
LRU (QLRU) [209, 210]. We will use 2-bit RRIP and QLRU interchangeably.
Now consider again Set 1 in Figure 4.10a, to which four addresses {𝐶2, ..., 𝐶5} are mapped. Under

the QLRU policy, it is believed that thrashing can be triggered by first sequentially priming the
set with a pattern of 𝐶2, 𝐶2, 𝐶3, 𝐶3, ..., 𝐶5, 𝐶5, then accessing 𝑇𝑎, followed by probing the set with
𝐶2, 𝐶3, ..., 𝐶5 [47, 170]. The rationale for using a repeating-access pattern is that the first access
inserts the cache line into Set 1 with an insertion age, which is usually 1. Then the second access
to the same cache line will promote the line into the “hit” age, which is usually 0. After using this
pattern, {𝐶2, ..., 𝐶5} will have the same age. Then after accessing 𝑇𝑎 to evict 𝐶2, the probe accesses
to 𝐶2, 𝐶3, ..., 𝐶5 will trigger thrashing.
However, whether the repeating-access pattern can trigger thrashing depends on many factors,
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such as the initial cache replacement policy states and the exact QLRU variant, which includes the
insertion policy, the hit promotion policy, the tie-breaking policy, and the policy of handling the
case where no lines have an age 3 [206]. Due to the complexity and large design space of QLRU, we
tested the repeating-access pattern using the cache simulation tool provided by nanoBench [206,
211]. This simulation tool has been used to match against Intel’s cache replacement behaviors
in an effort to recover Intel’s cache replacement policies [206]. Therefore, this simulation tool
should produce high-fidelity results. Using nanoBench to simulate the repeating-access pattern in
an initially empty 4-way cache set while varying QLRU variants, we found that thrashing did not
occur in 232 QLRU variants out of 320 deterministic QLRU variants supported by nanoBench.2

Starting from a non-empty cache set will further increase the difficulty of causing thrashing, as the
initial cache replacement policy states are unknown to the attacker.

Necessity of constructing and using L2 eviction sets. Using thrash-exploiting algorithms on
caches with QLRU replacement policy is more expensive than prior work [47] estimated. This is
because when using the repeating-access pattern, one needs to guarantee that the repeated access is
not filtered by L1 or L2 cache and is received by LLC. As a result, one needs to build an L2 eviction
set for each candidate address and evict the candidate address with the L2 eviction set before the
repeated access. Even without considering the cost of building L2 eviction sets, the construction
of an LLC eviction set would actually require (3+𝑊 𝐿2)𝑁+1 accesses, instead of 3𝑁+1 accesses
estimated by prior work [47], where 𝑁 is the candidate set size and 𝑊 𝐿2 is the L2 associativity,
which is often 16 or higher.

Unknown replacement policy of Intel’s non-inclusive LLCs. To the best of our knowledge,
the replacement policy of non-inclusive LLCs used by modern Intel server processors is yet to
be recovered. The main difficulties in recovering its replacement policy are the undocumented
interaction between the LLC and SF and the policy considers the coherence state of the cache lines
(Section 4.2.2). Additionally, it has been found that Intel server processors can allocate ways for
Direct Cache Accesses (DCAs) [212], which further complicates the recovery and exploitation of
the replacement policy in a data center setting, where DCA is frequently used.

2To reproduce our simulation, one can download nanoBench [211] and run the cacheSeq.py script found
in directory tools/CacheAnalyzer. For example, command ./cacheSeq.py -sim QLRU_H00_M1_R0_U1
-sets 1 -simAssoc 4 -seq "A A B B C C D D E A? B? C? D?" simulates a 4-way cache using the
QLRU_H00_M1_R0_U1 variant, which is used by Intel Core i5-1035G1 (Ice Lake) [206], with an access sequence of
“A A B B C C D D E A? B? C? D?”. In this access sequence, each letter represents an access to a cache line, with
different letters representing accesses to different cache lines. Only cache hits from accesses followed by a “?” are
reported. For the command above, nanoBench reports one cache hit on the last “D?” access. Note that while this
simulation requires no kernel module support, nanoBench will complain if the kernel module is not loaded. This can
be solved by commenting out lines 389–404 in kernelNanoBench.py except for line 398. Finally, please refer to
the nanoBench paper [206] for more details on QLRU variants and their naming conventions.
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CHAPTER 5: High-Performance, Low-Leakage Dynamic Resource Partitioning

5.1 INTRODUCTION

As shown in Chapters 3–4, it is feasible for an unprivileged malicious cloud user to exfiltrate
sensitive information from a target victim using microarchitectural side-channel attacks, such as
last-level cache Prime+Probe, in public clouds. As microarchitectural side-channel attacks rely
on the sharing of resources between the attacker and the victim, a principled approach to defend
against these attacks is to partition the shared resources among different users.
For example, a shared hardware structure can be spatially partitioned [61]. In such a design, each

process gets a static partition for the duration of its execution. Hence, information about a process’
use of the shared resource cannot leak to processes that own other partitions of the structure. Taking
a shared cache as an example, each process may get one way. While static partitioning is safe, it
is undesirable for a dynamic environment where the running processes and the process resource
demands change over time. In such an environment, any static partition is suboptimal and can lead
to resource wastage or under-provisioning [46, 53].
An intermediate approach that can retain high performance while leaking a limited amount of

information is dynamic partitioning [104, 105, 213, 214]. Here, individual processes can dynam-
ically increase or decrease the size of their partition. For example, a process may be allowed to
resize its partition at certain times and by a certain amount.
It would be useful to formally quantify the leakage of dynamic partitioning. One could then

assess the trade-off between security lost and performance gained. Unfortunately, accurately quan-
tifying the leakage with dynamic partitioning is hard. The precise way to do so is to enumerate all
the possible inputs that the victim program can take (including their probabilities) and record all
the resulting Resizing Traces. A resizing trace is the sequence of resizing actions (e.g., expand the
partition, shrink it, or maintain it), and the time of each action. Then, the leakage of the program
is calculated as the entropy (intuitively, the variability) of these resizing traces [215].
Clearly, this approach does not scale. Furthermore, in today’s dynamic partitioning schemes,

what resizing decisions are made (in ‘space’) and when they are made (in ‘time’) are entangled.
For example, when a program reaches a given phase and triggers a resize does depend on its rate
of forward progress up to that point (time), which in turn is based on previous partition decisions
(space), and so on. Since program timing depends on low-level effects such as microarchitec-
tural details, it is typically intractable to analyze. By implication, since the sequence of actions is
entangled with timing, the sequence of actions is intractable to analyze.1

1This issue is akin to taint explosion in traditional information-flow systems [216, 217].
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As a result, state-of-the-art leakage analysis typically assumes the worst case: all the resizing
traces that could theoretically occur are realizable and, therefore, at each resizing decision point,
all choices are equally likely. The result is leakage overestimation. Then, assuming that a user
has a fixed leakage budget and that exhausting the budget at runtime will prohibit further resiz-
ings [218, 219, 220], overestimating leakage means that fewer partition resizings are allowed be-
fore the budget is reached—unnecessarily hurting performance. Therefore, if the leakage could be
bound tightly, it would be possible to improve performance.
In this chapter, we present Untangle, a novel framework for constructing low-leakage and high-

performance dynamic partitioning schemes. Untangle formally splits the leakage into two parts:
(i) leakage from deciding what resizing action to perform (action leakage) and (ii) leakage from
deciding when each resizing action occurs (scheduling leakage).
Based on this breakdown, Untangle makes two advances. First, Untangle introduces a set of

principles for constructing dynamic partitioning schemes that untangle program timing from the
action leakage. As a result, the sequence of resizing actions only depends on the retired dynamic
instruction sequence of the execution, and not on timing (e.g., the cycle when each instruction
retires). Following these principles, the action leakage can be altogether eliminated with the help
of annotations.
In a second advance, Untangle introduces a novel way to model the scheduling leakage without

analyzing program timing. Overall, with these two contributions, Untangle is able to quantify the
leakage of a dynamic resizing scheme more tightly than prior work.
The main focus of this chapter is on describing the Untangle framework rather than presenting

a detailed hardware implementation. Still, Untangle can be applied to a variety of hardware struc-
tures. In our evaluation, we apply it to dynamically partition the last-level cache. For a large set
of workloads, we compare Untangle to a conventional dynamic partitioning approach. We show
that, on average, workloads leak 78% less under Untangle than under the conventional dynamic
approach, for approximately the same workload performance.
This chapter makes the following contributions:

• Proposes Untangle, a novel framework for constructing low-leakage and high-performance
dynamic partitioning schemes.

• Presents a set of principles to untangle program timing from action leakage.

• Introduces a way to model scheduling leakage without analyzing program timing.

• Applies Untangle to dynamic partitioning of the last-level cache and evaluates its perfor-
mance and leakage under a large set of workloads.
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Table 5.1: Characteristics of some prior dynamic partitioning schemes.

Name Resource Utilization Metric Action Heuristic Resizing Schedule

UMON [104] Last-level
cache (LLC)

Number of LLC
hits under different
partition sizes

Pick partition sizes
that maximize global
LLC hits

Every 5M cycles

Jigsaw [214] LLC Similar to
UMON [104]

Peekahead algorithm
in software Every 50M cycles

Jumanji [105] LLC Tail latency of net-
work requests

Compare to static
thresholds Every 100ms

SecSMT [213] Pipeline
structures

Number of “full”
events

Increase the partition
that has the most “full”
events

Every 100K cycles

5.2 BACKGROUND: ENTROPY AND MUTUAL INFORMATION

Entropy is a quantitative measure of information, represented by the uncertainty of a random
variable [215]. Let 𝑋 be a discrete random variable that takes values in 𝒳 and 𝑝(𝑥) be the proba-
bility of {𝑋 = 𝑥}, 𝑥 ∈ 𝒳. Then the entropy of 𝑋 is

𝐻(𝑋) = − ∑
𝑥∈𝒳

𝑝(𝑥) log𝑝(𝑥). (5.2.1)

When the log is to the base 2, the entropy is measured in bits. 𝐻(𝑋) has the property of 𝐻(𝑋) ≤
log |𝒳|, where |𝒳| is the number of elements in𝒳. The equality is achieved if and only if 𝑋 follows
a uniform distribution over 𝒳. Intuitively, the more uniform the distribution of the variable is, the
higher the entropy or information carried by the variable is.
The joint entropy of two random variables 𝑋 and 𝑌 is

𝐻(𝑋, 𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝(𝑥, 𝑦) log𝑝(𝑥, 𝑦), (5.2.2)

where 𝑝(𝑥, 𝑦) is the probability of {𝑋 = 𝑥, 𝑌 = 𝑦}, 𝑥 ∈ 𝒳 ∧ 𝑦 ∈ 𝒴. The conditional entropy of 𝑋
given 𝑌 is

𝐻(𝑋|𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝(𝑥, 𝑦) log𝑝(𝑥|𝑦). (5.2.3)

The mutual information between variables 𝑋 and 𝑌 is the amount of information we learn about
one of the two variables when observing the other variable. It is defined by

𝐼(𝑋; 𝑌) = − ∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝(𝑥, 𝑦) log 𝑝(𝑥)𝑝(𝑦)𝑝(𝑥, 𝑦) . (5.2.4)

𝐼(𝑋; 𝑌) is always non-negative and 𝐼(𝑋; 𝑌) = 0 if 𝑋 and 𝑌 are independent. In all cases, 𝐼(𝑋; 𝑌) =
𝐼(𝑌; 𝑋).
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5.3 LEAKAGE OF DYNAMIC PARTITIONING SCHEMES

5.3.1 Generalizing Dynamic Partitioning Schemes

A dynamic partitioning scheme is typically characterized by three components (Table 5.2). One
is theUtilizationMetric for the resource of interest. This metric reflects a program’s demand for the
resource and guides resizing. For example, for the last-level cache (LLC), one possible utilization
metric is the number of LLC misses per thousand instructions. Typically, improving the utilization
metric translates into performance improvements.

Table 5.2: Components of a dynamic partitioning scheme.

Component Description
Utilization Metric Measure of the demand for the resource
Action Heuristic & Resiz-
ing Actions

How to pick what resizing action to perform (e.g.,
EXPAND, SHRINK, MAINTAIN)

Resizing Schedule When to make a resizing assessment and perform the
decided action

Another component is the Action Heuristic and the Resizing Actions (or Actions for short). Re-
sizing actions are scheme-defined operations for adjusting the partition size. Common actions are
“expand the partition” (EXPAND), “shrink it” (SHRINK), and “maintain it” (MAINTAIN). More gen-
erally, a scheme can define a set of actions, and each action consists of using a given partition
size next (e.g., actions can be “set the cache partition size to 1MB”, or “to 2MB”, or “to 4MB”).
The role of the action heuristic is to pick one of the possible actions based on the utilization met-
ric value. For example, an action heuristic is to compare the utilization metric to some utilization
thresholds and, based on the result, decide which action to perform. We call this checking and
decision process a Resizing Assessment.
A final component is the Resizing Schedule (or Schedule for short). It determines when to make

a resizing assessment and perform the action. The action decided during the assessment is typically
performed immediately, but it can also be performed later. Example schedules are to assess resiz-
ing at fixed time intervals or after retiring a fixed number of instructions. The choice of resizing
schedule affects a scheme’s responsiveness to the program’s demands.
Table 5.1 lists the components of our framework for some prior dynamic partitioning schemes.

5.3.2 Leakage with Dynamic Partitioning

Dynamically adjusting the partition size of a program based on the program’s resource demands
can cause information leakage. Secrets can be leaked through when resizing assessments are made
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and what resizing actions are taken. More formally, the victim’s Resizing Trace, which includes
the sequence of resizing actions and the timing of each action, is secret-dependent and can leak
information. Using cache partitioning as an example, Figure 5.1 demonstrates three ways of leaking
a secret (similar to the three types of leakage in [221]).

1 if (secret)
2 for i in 0..4M // traverse a 4MB array
3 access(&arr[i]);
4 // Resizing assessment, expand?

(a) Resizing action depends on the secret through control flow.

1 for i in 0..4M // traverse a 4MB array
2 access(&arr[i * secret]);
3 // Resizing assessment, expand?

(b) Resizing action depends on the secret through data flow.

1 if (secret)
2 usleep(1000); // sleep for 1ms
3 for i in 0..4M // traverse a 4MB array
4 access(&arr[i]);
5 // Resizing assessment, will expand

(c) Resizing timing depends on the secret.

Figure 5.1: Code snippets that demonstrate the leakage of a dynamic cache-partitioning scheme.

In Figure 5.1a, the secret controls the execution of a large-array traversal. If the secret is non-
zero, the array is traversed, increasing the cache utilization and causing a partition expansion. The
attacker can observe the expansion, hence exfiltrating the secret (Section 5.4 details our threat
model). In Figure 5.1b, the secret influences the indexes used in the array traversal. Depending
on the secret value, the array traversal may access a different number of cache lines, resulting
in a different cache utilization and, possibly, a different resizing action. Finally, in Figure 5.1c,
regardless of the secret value, the array traversal always executes and triggers a partition expansion.
However, the secret is leaked based on when the expansion occurs.
The most accurate way to measure leakage in a dynamic partitioning scheme is to exhaustively

enumerate all possible victim program inputs (including their probability) and the resulting resizing
traces under the partitioning scheme. These are the set of resizing traces that are realizable. Then,
the leakage of the program is calculated as the entropy of these traces using Equation 5.2.1. This
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is the amount of information that the victim program leaks under this scheme. Unfortunately,
although this approach is accurate, it is not feasible in practice.

5.3.3 Limitations of Prior Work

To mitigate the leakage in dynamic partitioning schemes, most prior work either coarsens the
granularity of resizing (i.e., resizes less frequently or reduces the number of possible actions), or
fixes the timing of resizing actions to a publicly-known schedule [103, 218, 219, 220]. As a result,
these approaches reduce the leakage at the cost of losing some of the adaptivity of dynamic schemes.
Fundamentally, they trade off performance for better security.
Making matters worse, prior schemes often overestimate the leakage from resizing by implicitly

assuming that all the resizing traces that could theoretically occur are realizable. For example,
consider a dynamic partitioning scheme that makes resizing assessments every one millisecond
and supports two resizing actions. In a one-second execution of the program, the scheme will
make 1000 resizing assessments. Since the timing of the assessments is fixed at multiples of one
millisecond, the leakage purely comes from what action is taken at each assessment. Hence, a
common but over-conservative estimation is that the scheme can produce any of the 21000 different
traces in a one-second execution and that all traces have the same probability of occurring. Hence,
the leakage is computed using Equation 5.2.1 to be log 21000 = 1,000 bits, which is too conservative
for most programs.
Overall, this conservative assumption results in further restricting the adaptivity allowed: given

a target leakage budget, the budget will be consumed sooner because of the leakage overestimation,
which will prohibit further resizings. The end result is to render dynamic schemes less appealing.

5.3.4 Our Approach and Challenges

An intuitive idea to reduce the leakage of dynamic resizing schemes is to make the scheme aware
of which data is public and which is secret. Then, resizing assessments that only depend on public
data can be performed without leaking secret information. Consequently, the scheme gains more
resizing flexibility—which maximizes performance without impacting security.
Consider Figures 5.1a and 5.1b again. If the scheme knows that the array traversal is secret-

dependent (e.g., through annotations inserted by the side-channel detection tools of Section 2.2.5), it
can conveniently exclude the secret-dependent cache demand whenmeasuring the cache utilization
metric. Hence, the resulting resizing trace depends on only public cache utilization and does not
reveal the secret.
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However, these annotations alone cannot remove the leakage in Figure 5.1c. This is because the
secret causes the public memory accesses to have secret-dependent timing. Note that the secret-
dependent timing can manifest not only through when a resizing assessment is made, but also
through what resizing action is taken at an assessment. To see how, consider Figure 5.1c but with
a resizing schedule that makes an assessment at 1ms (in contrast to making an assessment after the
array traversal at Line 5). In this case, depending on the secret value, the point of assessment may be
before or after the public array traversal, resulting in a different cache utilization and, consequently,
a different resizing action.
Unfortunately, extending existing side-channel detection tools for this type of implicit flow

through program timing is very hard—given the impracticality of fully determining program tim-
ing with modern processors and taint explosion in traditional information-flow systems [216, 217].
As a result, in the case when the victim has secret-dependent timing (which is the general case), it
is hard to bound the leakage any tighter than the conservative approach discussed above does.
To address this problem, in Section 5.5, we build a novel framework named Untangle that helps

reason about this entanglement of action and timing. Based on the framework, we develop design
principles for dynamic resizing schemes and mitigations to achieve a tight bound on the leakage.
Untangle enables us to attain high performance without compromising security.

5.4 THREAT MODEL

We consider a public cloud environment where users are mutually-distrusting peers. Under this
mutually-distrusting peer model, the attacker and the victim are in the same security level. Ad-
ditionally, the attacker and the victim share a hardware resource (e.g., a cache). The system can
partition the resource into attacker and victim partitions. The system can dynamically change the
partition sizes based on the resource utilization, which can be secret-dependent and reveals sensi-
tive information of the victim.
We assume an idealized attacker that can directly observe the victim’s exact resizing trace (i.e.,

what resizing actions are taken and when). In practice, an attacker can only indirectly estimate
the victim’s resizing trace by probing its own partition size and observing how it changes over
time as a result of victim resizes. This estimation is not completely accurate because neither the
resizing actions nor the attacker’s probing are instantaneous. Hence, a realistic attacker would be
less capable than the idealized attacker that we are assuming. Lastly, we assume that the partition
scheme does not change utilization metric, action heuristic, resizing actions, or resizing schedule
in the course of the victim’s execution.
The victim sets a threshold for how much leakage from the victim program’s run or runs is
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tolerable. The dynamic partitioning scheme (i.e., Untangle) measures the runtime leakage and
guarantees it cannot exceed this threshold. If and when the threshold is reached, the victim is not
allowed to perform further resizings—hurting the performance of its subsequent execution, but not
its security.
We assume that there are sound approaches to annotate programs with secret-dependent usage of

the resource being partitioned and secret-dependent control-flow. This is achievable with existing
analyses [109, 110, 111, 113], or with a conservative approach that annotates all the instructions
from the part of the program that handles secrets. Section 5.6.5 discusses the capabilities of these
existing analyses.

5.5 UNTANGLE: SECURE DYNAMIC PARTITIONING

Recall from Section 5.3.1 that a dynamic partitioning scheme uses a resizing schedule to decide
when to perform resizing assessments, and an action heuristic to decide what resizing actions to
take. As a result, secrets are leaked through the observation of “when” and “what” actions are
taken. While annotating instructions that have secret-dependent resource usage can help reduce
the leakage in some special cases, annotations have limited use in general programs due to secret-
dependent timing (Section 5.3.4).
In this section, we presentUntangle, a novel framework that quantifies the leakage in a dynamic

partitioning scheme with a tight bound. Untangle formally splits the leakage into two parts: (i)
leakage from deciding what resizing action to perform (action leakage) and (ii) leakage from de-
ciding when each resizing action occurs (scheduling leakage). Based on this breakdown, Untangle
makes two contributions. First, it introduces a set of principles to disentangle program timing from
the action leakage, and eventually remove the action leakage with annotations. Second, Untangle
introduces a novel way to tightly-bound scheduling leakage without analyzing program timing.
Figure 5.2 shows a diagram with the action and scheduling leakages, and how both are affected

by the same two root causes: secret-dependent demand and secret-dependent timing. In this sec-
tion, we describe how Untangle allows us to untangle the different effects. First, Section 5.5.1
shows how we formally separate the two types of leakage. Then, Section 5.5.2 shows how we can
eliminate action leakage. Finally, Section 5.5.3 presents an easy way to bound scheduling leakage.
The result is a tight bound estimation of the total leakage in a dynamic partitioning scheme.

5.5.1 Decoupling the Two Types of Leakage

Recall from Section 5.3.2 that a resizing trace is a sequence of tuples, where each tuple contains
a resizing action and the time of the action. Further, the leakage of a specific victim program is the
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Figure 5.2: Action and scheduling leakages and their root causes. Untangle is able to eliminate
Edges 1⃝ and 3⃝, and simplify the analysis for Edges 2⃝ and 4⃝.

entropy of the realizable resizing traces for the program.
To understand how we decouple the leakages for a given program, let 𝑆 be a discrete random

variable that represents a sequence of resizing actions. 𝑆 takes values in a set 𝒮. If we denote the
set of supported resizing actions by 𝒜, then an action sequence 𝑠 ∈ 𝒮 is 𝑎1, 𝑎2, ..., 𝑎𝑛, where 𝑎𝑖
is the 𝑖th action in the sequence, and 𝑎𝑖 ∈ 𝒜. Note that 𝑆 only contains what resizing actions are
taken but not when.
For an action sequence 𝑠 ∈ 𝒮, let 𝑇𝑠 be a discrete random variable that represents the timing of

action sequence 𝑠. 𝑇𝑠 is a sequence of strictly-increasing timestamps 𝑡1, 𝑡2, ..., 𝑡𝑛, where 𝑡𝑖 is the
timestamp when the 𝑖th action occurs. 𝑇𝑠 takes values in 𝒯[𝑠]. Without loss of generality, we as-
sume that these timestamps have a finite resolution and therefore represent them as integers. Under
a fixed time-interval resizing schedule, 𝑠 has only one possible 𝑇𝑠 (i.e., |𝒯[𝑠]| = 1). However, un-
der a more general resizing schedule, 𝑠 can have many different 𝑇𝑠 (i.e., |𝒯[𝑠]| > 1). An example
of one such resizing schedules is to make a resizing assessment every 𝑁 retired instructions. 𝑇𝑠
varies because the time to retire 𝑁 instructions and then trigger an assessment depends on program
timing.
We use tuple (𝑆, 𝑇𝑆) to denote a random variable that represents the resizing trace. (𝑆, 𝑇𝑆) takes

values in {(𝑠, 𝜏𝑠) | 𝑠 ∈ 𝒮 ∧ 𝜏𝑠 ∈ 𝒯[𝑠]}. Therefore, the leakage 𝐿, which is equal to the entropy of
the realizable resizing traces, is the joint entropy of 𝑆 and 𝑇𝑆 (using Equation 5.2.2):

𝐿 = 𝐻(𝑆, 𝑇𝑆) = − ∑
𝑠∈𝒮

∑
𝜏𝑠∈𝒯[𝑠]

𝑝(𝑠, 𝜏𝑠) log𝑝(𝑠, 𝜏𝑠), (5.5.1)

where 𝑝(𝑠, 𝜏𝑠) is the probability of following a specific action sequence 𝑠 with a specific timing
sequence 𝜏𝑠.
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By the chain rule of joint entropy [215], we can rewrite Equation 5.5.1 as:

𝐿 = 𝐻(𝑆, 𝑇𝑆) = 𝐻(𝑆) + 𝐻(𝑇𝑆|𝑆)
= 𝐻(𝑆) − ∑

𝑠∈𝒮
∑

𝜏𝑠∈𝒯[𝑠]
𝑝(𝑠, 𝜏𝑠) log𝑝(𝜏𝑠|𝑠) (5.5.2)

= 𝐻(𝑆) − ∑
𝑠∈𝒮

∑
𝜏𝑠∈𝒯[𝑠]

𝑝(𝑠)𝑝(𝜏𝑠|𝑠) log𝑝(𝜏𝑠|𝑠) (5.5.3)

= 𝐻(𝑆) + ∑
𝑠∈𝒮

𝑝(𝑠)( − ∑
𝜏𝑠∈𝒯[𝑠]

𝑝(𝜏𝑠|𝑠) log𝑝(𝜏𝑠|𝑠)
⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟

denoted by 𝐻(𝑇𝑠|𝑆=𝑠)

) (5.5.4)

= 𝐻(𝑆) + ∑
𝑠∈𝒮

𝑝(𝑠)𝐻(𝑇𝑠|𝑆 = 𝑠) (5.5.5)

= 𝐻(𝑆) + 𝐸[𝐻(𝑇𝑠|𝑆 = 𝑠)]. (5.5.6)

Equation 5.5.2 applies the definition of conditional entropy from Equation 5.2.3. The term over
the bracket in Equation 5.5.4 is the entropy of the timing sequences in a specific action sequence
𝑠, which is denoted as 𝐻(𝑇𝑠|𝑆 = 𝑠) in Equation 5.5.5. The second term in Equation 5.5.5 is the
expected value of 𝐻(𝑇𝑠|𝑆 = 𝑠) for every possible action sequence 𝑠.
Equation 5.5.6 shows that the leakage is composed of two simple terms: (1) 𝐻(𝑆) is the entropy

of resizing action sequences, which we call action leakage; and (2) 𝐸[𝐻(𝑇𝑠|𝑆 = 𝑠)] is the expected
value of the entropy of timing sequences 𝑇𝑠 for every possible action sequence 𝑠, which we call
scheduling leakage.

Example. Figure 5.3 illustrates the computation of leakage by decoupling action and schedul-
ing leakages. For this example, assume a dynamic partitioning scheme with two supported re-
sizing actions, EXPAND and MAINTAIN, and three realizable traces. These three traces have two
unique action sequences: (1) 𝑠1 = EXPAND,MAINTAIN (i.e., 𝑠1 performs EXPAND and then MAIN-
TAIN), and (2) 𝑠2 = MAINTAIN,MAINTAIN. Both sequences are equally likely (i.e., 𝑝(𝑠1) = 0.5 and
𝑝(𝑠2) = 0.5). Sequence 𝑠1 has two equally probable timing sequences, 𝜏𝑠1 = 100 cycles, 200 cycles
and 𝜏′𝑠1 = 150 cycles, 300 cycles. Sequence 𝑠2 has only one possible timing sequence, 𝜏𝑠2 =
120 cycles, 240 cycles.
With our framework, the action leakage is the entropy of the resizing action sequences. Since

there are two resizing action sequences in total and they are equally likely, the action leakage𝐻(𝑆)
is −(0.5 log 0.5 + 0.5 log 0.5) = 1 b. As for the scheduling leakage, since sequence 𝑠1 has two
equally likely timing sequences, 𝐻(𝑇𝑠1 |𝑆 = 𝑠1) = 1 b; further, since sequence 𝑠2 has only one
possible timing sequence, 𝐻(𝑇𝑠2 |𝑆 = 𝑠2) = 0. Therefore, the scheduling leakage is 𝐸[𝐻(𝑇𝑠|𝑆 =
𝑠)] = 𝑝(𝑠1)𝐻(𝑇𝑠1 |𝑆 = 𝑠1) + 𝑝(𝑠2)𝐻(𝑇𝑠2 |𝑆 = 𝑠2) = 0.5 bits. In total, these three traces leak
𝐿 = 𝐻(𝑆) + 𝐸[𝐻(𝑇𝑠|𝑆 = 𝑠)] = 1.5 bits.
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Figure 5.3: An illustration of decoupling the leakage.

5.5.2 Eliminating Action Leakage

The action leakage 𝐻(𝑆) can be caused by both secret-dependent demand and secret-dependent
timing (Edges 1⃝ and 3⃝ in Figure 5.2). Unfortunately, it is challenging to reduce the bounds on
the action leakage due to the impracticality of analyzing secret-dependent program timing (Sec-
tion 5.3.4). To make the action leakage independent of program timing and, therefore, remove
Edge 3⃝, we propose two design principles. With these two principles, the action sequence will
only depend on the retired dynamic instruction sequence in the execution, but not on program tim-
ing. Then, we will discuss how to remove Edge 1⃝ with annotations. By removing both edges, we
have completely eliminated the action leakage.

Principle 1: Use a timing-independent metric to measure the resource utilization. A timing-
independent metric means that it only depends on the architectural semantics of the executed pro-
gram, such as its retired dynamic instruction sequence, and not on the actual instruction timing.
An example of what is not a timing-independent metric for caches is the number of cache hits in
the past 𝑇 cycles (similar to the metric used in [104]). This metric is not timing-independent for
two reasons. First, the performance statistic, i.e., the number of cache hits, is timing-dependent
in modern out-of-order processors. The reason is that the program timing can change the order
of memory accesses, resulting in different cache states and affecting the number of cache hits.
Second, the profiling history included in the window of 𝑇 cycles is also timing-dependent.
To define a timing-independent metric, wemust only use timing-independent performance statis-

tics. Also, if the metric is defined on a window of execution, the history included in the window
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must not depend on program timing. In the example of cache partitioning, a timing-independent
metric can be the memory footprint (i.e., the number of unique memory lines accessed) of the past
𝑁 retiredmemory instructions, regardless of what level in the cache hierarchy the memory requests
were served from.

Principle 2: Use a resizing schedule based on the progress of instruction execution (or “progress-
based schedule” for short). This means that we tie the assessment points to when the program has
made a certain progress (e.g., after 𝑁 retired instructions)—not to when a certain time has elapsed.
The reason is that if assessment points are tied to elapsed time, e.g., making an assessment after 𝑇
cycles, then the utilization metric value at the point of assessment depends on what instructions the
program can execute in 𝑇 cycles, which depends on program timing. As a result, secret-dependent
timing can still influence the resizing action taken at an assessment, even if a timing-independent
metric is used. Figure 5.4 illustrates a time-based schedule that assesses at every 𝑇 cycles and a
progress-based schedule that assesses at every 𝑁 retired instructions.

Time

TimeTime-Based
Schedule

Progress-Based
Schedule

𝑇 cycles

𝑁 retired instructions

Figure 5.4: Comparison of a time-based schedule (used by prior work [104, 105, 213, 214]) and a
progress-based schedule. Dots on the timelines are the times when assessments occur.

By following these two design principles, the resizing action sequence becomes timing-independent—
i.e., it only depends on the sequence of retired dynamic instructions in an execution. This removes
Edge 3⃝ in Figure 5.2. With this property, if we can additionally ensure that the action sequence
only depends on the public portion of the dynamic instruction sequence, we can also remove Edge
1⃝ and, therefore, completely eliminate the action leakage.
To make the action sequence only dependent on the public portion of the instruction sequence,

we annotate all the instructions that use the resource under partitioning and are data- or control-
dependent on secrets. Then, when measuring the utilization metric, we exclude their contribution.
We also annotate any instructions that are control-dependent on secrets, irrespective of whether they
use the resource. Then, the execution of these instructions is not counted towards the execution
progress. Prior program analyses [109, 110, 111, 113] can be applied to find and annotate these
two kinds of instructions. With this support, regardless of the values of secret inputs, the point in
the execution where an assessment is made and the utilization metric value at that assessment point
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are independent of the said secrets. This removes Edge 1 . Overall, the action sequence is now
secret-independent. This means that, for a given public input, there is only one possible realizable
action sequence 𝑠 regardless of the secret inputs. Therefore, we have eliminated the action leakage.

5.5.3 Bounding Scheduling Leakage

The scheduling leakage 𝐸[𝐻(𝑇𝑠|𝑆 = 𝑠)] is the expected value of the entropy of timing sequences
𝑇𝑠, for every possible action sequence 𝑠. Since there is only one possible action sequence 𝑠 for a
given public input due to the elimination of the action leakage in Section 5.5.2, then 𝐸[𝐻(𝑇𝑠|𝑆 =
𝑠)] = 𝐻(𝑇𝑠|𝑆 = 𝑠). Hence, the following discussion focuses on bounding 𝐻(𝑇𝑠|𝑆 = 𝑠) for the
specific action sequence 𝑠 that occurs at runtime for the given public input.
If we tied assessment points to elapsed time (e.g., a resize every 𝑇 cycles), 𝐻(𝑇𝑠|𝑆 = 𝑠) = 0

for any action sequence 𝑠 and the scheme would not have scheduling leakage. But then it would
have timing-dependent action leakage (Section 5.5.2). If, instead, we use a progress-based resizing
schedule as discussed in Section 5.5.2, we eliminate the action leakage with the help of annotations.
However, we still have timing-dependent scheduling leakage: when an assessment occurs leaks
how much time the program takes to make a certain amount of execution progress.
It may seem that nomatter whether a scheme ties assessment points to elapsed time or to progress,

one cannot avoid analyzing program timing. To solve this problem, we propose a covert chan-
nel model that enables us to bound the worst-case scheduling leakage in an environment with a
progress-based resizing schedule, without analyzing program timing. With this approach then, we
have no action leakage and can compute a tightly bound of the scheduling leakage.
A covert channel assumes that both the sender (i.e., victim) and the receiver (i.e., attacker) are

cooperative, while a side channel assumes that the sender is non-cooperative. Therefore, comput-
ing the maximum data rate of the more capable covert channel produces an upper bound of the
scheduling leakage that occurs in the real environment with a non-cooperative victim. Overall,
with this approach, we do not need to find exact realizable timing sequences nor consider Edges
2 and 4 in Figure 5.2.
Next, we describe the model for the covert channel, the bound on the scheduling leakage, and

optimizations to reduce the leakage. We assume a progress-based resizing schedule and that we
have already eliminated the action leakage with annotations.

Understanding the Covert Channel. We observe that the leaked information is encoded as the
duration of remaining in a certain observable state (i.e., using a certain partition size). To illustrate
this observation, we revisit the code snippet in Figure 5.1c. The code snippet always decides to
EXPAND after finishing the array traversal, but the timing of EXPAND is secret-dependent, as shown
in Figure 5.5. Therefore, the example can be modeled as a covert channel that changes the current
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𝑡	𝑚𝑠
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𝑠𝑒𝑐𝑟𝑒𝑡 = 0

𝑠𝑒𝑐𝑟𝑒𝑡 ≠ 0

Figure 5.5: Timing of EXPAND for the code snippet in Figure 5.1c.

state (i.e., performs EXPAND) after 𝑡 ms to transmit a symbol “0”, or after 𝑡 + 1 ms to transmit a
symbol “1”.
The sender can try various transmission strategies to amplify the leakage. For example, the

sender can use more than two input symbols per transmission to increase the amount of data being
transferred each time. Each symbol will be assigned a different time duration. The sender can
also increase the time duration differences between symbols, to make the channel more resilient to
potential noise—e.g., instead of using 𝑡 ms and 𝑡 + 1 ms to encode “0” and “1”, one can use 𝑡 ms
and 𝑡 + 10 ms to make “0” and “1” more distinguishable under noise. Finally, the sender can tune
the probability distribution of input symbols.
We do not limit the transmission strategy that a sender uses. Even in this case, the maximum

data rate through the covert channel is still bounded because of a trade-off between the amount
data per transmission and the average transmission time. Intuitively, this is because as the number
of symbols increases or the time differences that distinguish these symbols increase, so does the
average transmission time. It can be shown that, after a point, increasing the data per transmission
results in a lower data transmission rate.

Example. The following two strategies illustrate the trade-off: (i) STRATEGY 1 uses 1ms, 2ms,
3ms, and 4ms to represent an alphabet of four symbols; and (ii) STRATEGY 2 uses 1ms, 2ms, ..., 8ms
to represent an alphabet of eight symbols. To simplify the discussion, we assume that all symbols
are equally likely in both strategies. Then, STRATEGY 1 transmits log 4 = 2 bits per transmission
(i.e., the entropy of the four symbols), and the average transmission time is (1 + 2 + 3 + 4)/4 =
2.5ms. STRATEGY 2 transmits log 8 = 3 bits per transmission and the average transmission time is
(1 + 2 + ... + 8)/8 = 4.5ms. Comparing the data rates for both strategies, we see that STRATEGY
1’s data rate (2 bits/2.5ms = 800 bits/s) is higher than STRATEGY 2’s (3 bits/4.5ms ≈ 667 bits/s),
despite using fewer symbols.

Limiting the Maximum Data Rate.. Based on the previous intuitive explanation of the covert
channel, and before presenting a formal model of it, we introduce two mechanisms to reduce the
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When the actions occur

𝑁 retired instructions

Figure 5.6: Delaying actions by a random amount of time.

maximum data rate of the covert channel (i.e., the upper bound of the scheduling leakage rate). One
mechanism lowers the transmission rate and the other reduces the amount of data that the receiver
(i.e., the attacker) can learn per transmission.

Mechanism 1: Set a minimum wait time, called the Cooldown Time (denoted by 𝑇𝑐), between
two consecutive resizing assessments. Specifically, if an assessment occurs at 𝑡, then the scheme
enforces that the next assessment cannot occur before 𝑡 +𝑇𝑐. This cooldown time helps reduce the
transmission rate.
Once 𝑇𝑐 is picked, the resizing schedule has to be aware of the value of 𝑇𝑐, and guarantee that

the time between two consecutive assessments is never below 𝑇𝑐. For example, using a resizing
schedule that makes assessments every 𝑁 retired instructions, a possible approach is to set 𝑁 to
the maximum number of instructions that the core can possibly retire within 𝑇𝑐. If the core has a
commit width of 𝑤, then 𝑁 = 𝑤𝑇𝑐 (assuming 𝑇𝑐 is measured in cycles).
The cooldown time is set based on the security and performance goals: the longer the cooldown

time is, the lower the leakage rate is, and the slower the program execution is.

Mechanism 2: Delay each resizing action by a random time 𝛿 after the corresponding assess-
ment point. Intuitively, adding random delays “blurs” the differences between symbols and can
introduce bit errors in the channel, thus reducing the amount of information learned by the receiver.
This technique is shown in Figure 5.6. On the time axis, blue dots show when the assessments oc-
cur, and orange triangles show when the actions take place. Note that, right after Assessment 𝑖 is
made, we start counting progress towards Assessment 𝑖 + 1. This ensures that the action taken at
Assessment 𝑖 + 1 is not influenced by program timing.

Formal Analysis. This section formalizes the proposed covert channel model and the two data
rate reduction mechanisms just described. To be conservative, we reason about the upper bound
of 𝐻(𝑇𝑠|𝑆 = 𝑠) for the worst-case action sequence 𝑠. The worst-case action sequence is the one
that changes the partition size at every action, thus making the timing of every action visible to the
attacker. Later, in Section 5.5.3, wewill discuss how themodel can be optimizedwhen the sequence
includes MAINTAIN decisions—as usual, assuming that only one action sequence is possible.
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Figure 5.7: Timeline of the sender and the receiver.
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Figure 5.8: Optimizing the covert channel with MAINTAIN.

We assume that the resolution at which the attacker (i.e., receiver) can measure the time is finite.
We represent timestamps with unit-less integers, with 1 time unit being the resolution.
As per Section 5.5.3, the information is encoded as the time duration of remaining in a certain

partition size, and the sender uses different durations to represent different input symbols. There-
fore, let 𝑋 be a random variable that represents an input symbol. 𝑋 takes values in a discrete input
alphabet 𝒳. An input symbol 𝑥 ∈ 𝒳 follows the input distribution 𝑝(𝑥). For each input symbol 𝑥,
we use a unique time duration 𝑑𝑥 to represent it. Since we enforce that two assessments must be at
least 𝑇𝑐 apart, 𝑑𝑥 ≥ 𝑇𝑐 for any 𝑥. Then, the average time for one transmission is:

𝑇𝑎𝑣𝑔 = ∑
𝑥∈𝒳

𝑝(𝑥)𝑑𝑥. (5.5.7)

Lastly, if there are multiple transmissions (one per each assessment), we denote the input symbol
in the 𝑖th transmission as 𝑋𝑖, and the input sequence used in 𝑛 transmissions as 𝑋𝑛 = 𝑋1, 𝑋2, ..., 𝑋𝑛.
On the receiver side, let 𝑌 be a random variable that represents an output symbol. Note that

𝑌 is not the same as 𝑋 because of the random delay 𝛿. Specifically, 𝑌 takes values in a discrete
output alphabet 𝒴, which is determined by𝒳 and the distribution of the random delay 𝛿 (i.e., 𝑝(𝛿)).
For a specific input symbol 𝑥 represented by time duration 𝑑𝑥, the time duration observed by the
receiver, denoted by 𝑑𝑦, can be different from 𝑑𝑥 due to the 𝛿. If we denote the random delay in
transmission 𝑖 by 𝛿𝑖, then

𝑑𝑦 = 𝑑𝑥 + 𝛿𝑖 − 𝛿𝑖−1, (5.5.8)
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as illustrated in Figure 5.7. Since each possible 𝑑𝑦 is mapped to 𝑦 ∈ 𝒴, the output distribution 𝑝(𝑦)
can be computed from 𝑝(𝑥) and 𝑝(𝛿). Lastly, the output sequence received from 𝑛 transmissions
is denoted by 𝑌𝑛 = 𝑌1, 𝑌2, ..., 𝑌𝑛.
The maximum amount of information that the receiver learns from 𝑛 transmissions is 𝐼(𝑋𝑛; 𝑌𝑛),

the mutual information between 𝑋𝑛 and 𝑌𝑛 (Equation 5.2.4). Also, the average time for 𝑛 trans-
missions is 𝑛𝑇𝑎𝑣𝑔. Therefore, the data rate 𝑅 of the covert channel is

𝑅 = 𝐼(𝑋𝑛; 𝑌𝑛)/𝑛𝑇𝑎𝑣𝑔. (5.5.9)

Different input distributions of 𝑝(𝑥) result in different values of 𝐼(𝑋𝑛; 𝑌𝑛) and 𝑇𝑎𝑣𝑔. Therefore, we
are interested in the input distribution of 𝑝(𝑥) that produces the maximum data rate (𝑅𝑚𝑎𝑥) of the
covert channel. This value is an upper bound of the scheduling leakage rate of any victim program.

Optimized Covert Channel Model.. In Section 5.5.3, the covert channel model conservatively
assumes the worst-case action sequence, where every action changes the partition size, thus making
the timing of every action visible to the attacker. However, in practice, most resizing assessments
result in MAINTAIN (as shown in Section 5.9), whose timing is invisible to the attacker.
Since the victim only has one possible action sequence 𝑠 underUntangle for a given public input,

we can leverage theMAINTAIN actions to optimize the covert channel model to reduce the maximum
data rate. The idea is illustrated in Figure 5.8. If the victim chooses MAINTAIN 𝑛 consecutive times,
the execution is equivalent to a case when the two visible resizing actions that occur right before
and right after these 𝑛MAINTAIN actions are separated by a longer cooldown time 𝑇′𝑐 = (𝑛 + 1)𝑇𝑐.
Therefore, the scheduling leakage during this period is reduced because of the increased cooldown
time. Consequently, we can monitor the number of consecutive MAINTAINs performed during a
victim execution and lower the upper bound of the scheduling leakage rate of the execution.

Computing the Maximum Data Rate. Computing a closed-form of 𝑅𝑚𝑎𝑥 is complex. Conse-
quently, we show a numerical method that computes a tight upper bound of 𝑅𝑚𝑎𝑥. Recall that the
maximum data rate 𝑅𝑚𝑎𝑥 is:

𝑅𝑚𝑎𝑥 = max
𝑝(𝑥)

{𝐼(𝑋𝑛; 𝑌𝑛)/𝑛𝑇𝑎𝑣𝑔}, (5.5.10)

where the maximization is taken over all possible input distributions 𝑝(𝑥).
The following discussion assumes that the random delay 𝛿 across transmissions is independent

and identically distributed (IID), and that the input symbol 𝑋 follows that same input distribution
𝑝(𝑥) across transmissions. As a result, the output symbol 𝑌 follows the same output distribution
𝑝(𝑦) across transmissions.
To find themaximumdata rate𝑅𝑚𝑎𝑥, the first step is to compute themutual information 𝐼(𝑋𝑛; 𝑌𝑛).

However, computing it directly from the mutual information definition is not feasible, since the
number of transmissions 𝑛 can be unbounded. Hence, we perform the following conservative sim-
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plification and approximation. By the definition of mutual information (Equation 5.2.4), we have

𝐼(𝑋𝑛; 𝑌𝑛) = 𝐻(𝑌𝑛) − 𝐻(𝑌𝑛|𝑋𝑛). (5.5.11)

For the first term 𝐻(𝑌𝑛), which is the joint entropy of 𝑌1, 𝑌2, ..., 𝑌𝑛, we apply the chain rule [215]

𝐻(𝑌𝑛) = 𝐻(𝑌1) +
𝑛
∑
𝑖=2

𝐻(𝑌 𝑖|𝑌 𝑖−1) (5.5.12)

≤
𝑛
∑
𝑖=1

𝐻(𝑌 𝑖) = 𝑛𝐻(𝑌). (5.5.13)

For the second term 𝐻(𝑌𝑛|𝑋𝑛), by the definition of the conditional entropy (Equation 5.2.3), we
have

𝐻(𝑌𝑛|𝑋𝑛) = − ∑
𝑥𝑛∈𝒳𝑛

∑
𝑦𝑛∈𝒴𝑛

𝑝(𝑥𝑛, 𝑦𝑛) log𝑝(𝑦𝑛|𝑥𝑛) (5.5.14)

= − ∑
𝑥𝑛∈𝒳𝑛

∑
𝛿𝑛∈Δ𝑛

𝑝(𝑥𝑛, 𝛿𝑛) log𝑝(𝛿𝑛|𝑥𝑛) (5.5.15)

= − ∑
𝑥𝑛∈𝒳𝑛

∑
𝛿𝑛∈Δ𝑛

𝑝(𝑥𝑛)𝑝(𝛿𝑛) log𝑝(𝛿𝑛) (5.5.16)

= − ∑
𝛿𝑛∈Δ𝑛

𝑝(𝛿𝑛) log𝑝(𝛿𝑛) (5.5.17)

= 𝐻(𝛿𝑛) = 𝑛𝐻(𝛿), (5.5.18)

where Equation 5.5.15 substitutes 𝑦𝑛 with 𝛿𝑛 because 𝑦𝑛 is a function of 𝛿𝑛 and 𝑥𝑛, Equation 5.5.16
holds because 𝛿𝑛 and 𝑥𝑛 are independent, and Equation 5.5.18 holds because random delays are
IID.
Therefore,

𝐼(𝑋𝑛; 𝑌𝑛) = 𝐻(𝑌𝑛) − 𝐻(𝑌𝑛|𝑋𝑛) ≤ 𝑛(𝐻(𝑌) − 𝐻(𝛿)). (5.5.19)

Using Equation 5.5.19, we can conservatively approximate 𝐼(𝑋𝑛; 𝑌𝑛) without considering the
whole sequences of 𝑋𝑛 and 𝑌𝑛. Hence, the goal becomes finding

𝑅′𝑚𝑎𝑥 = max
𝑝(𝑥)

{(𝐻(𝑌) − 𝐻(𝛿))/𝑇𝑎𝑣𝑔} (5.5.20a)

subject to ∑
𝑥
𝑝(𝑥) = 1, 𝑝(𝑥) > 0 (5.5.20b)

over all possible input distributions 𝑝(𝑥). 𝑅′𝑚𝑎𝑥 is an upper bound of 𝑅𝑚𝑎𝑥. The optimization
problem 5.5.20 fits the standard single-ratio fractional programming (FP) problem [222]. Dinkel-
bach’s transform [223] can iteratively converge to the optimal input distribution 𝑝(𝑥) that achieves
𝑅′𝑚𝑎𝑥.

Dinkelbach’s transform [223]. To simplify the discussion, we first consider a general FP problem
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maximize
𝑧

𝑁(𝑧)/𝐷(𝑧) (5.5.21a)

subject to 𝑧 ∈ 𝒵, (5.5.21b)

where 𝑁(𝑧) and 𝐷(𝑧) are continuous and real-valued functions of 𝑧. Moreover, 𝐷(𝑧) > 0 for all
𝑧 ∈ 𝒵.
To solve Problem 5.5.21, Dinkelbach’s transform introduces an auxiliary variable 𝑞 and a helper

function given by

𝐹(𝑞) = max
𝑧∈𝒵

{𝑁(𝑧) − 𝑞𝐷(𝑧)}. (5.5.22)

The algorithm then iteratively updates 𝑞 according to the following steps (with the value of 𝑞 in
the 𝑖th iteration denoted by 𝑞𝑖):

1. Set 𝑞1 = 0 and 𝑖 = 1.

2. Solve 𝐹(𝑞𝑖) for 𝑧𝑖 over 𝑧 ∈ 𝒵.

3. Update 𝑞𝑖+1 = 𝑁(𝑧𝑖)/𝐷(𝑧𝑖), increment 𝑖, and go to Step 2.

The algorithm iterates 𝑛 times until either 𝐹(𝑞𝑛) < 𝜖, where 𝜖 is a positive real number representing
the tolerance, or 𝑛 reaches the maximum number of iterations. Subsequently, 𝑧𝑛 can be used as an
approximate solution to Problem 5.5.21, and 𝑞𝑛 is an approximation of max𝑧∈𝒵{𝑁(𝑧)/𝐷(𝑧)}.
To find a tight upper bound for max𝑧∈𝒵{𝑁(𝑧)/𝐷(𝑧)} using the iterative solution 𝑞𝑛, we observe

that 𝐹(𝑞) is strictly monotonic decreasing with respect to 𝑞 [223]. Furthermore, it can be proven
that 𝑞∗ = max𝑧∈𝒵{𝑁(𝑧)/𝐷(𝑧)} if and only if 𝐹(𝑞∗) = 0 [223]. Therefore, we can guess an upper
bound 𝑞′ = 𝑞𝑛 + 𝛿, where 𝛿 is a small positive real number. If we verify that 𝐹(𝑞′) ≤ 0, then
we know that 𝑞′ ≥ 𝑞∗ since 𝐹(𝑞) is strictly monotonic decreasing. Otherwise, we increase 𝛿 and
repeat the process.

Our implementation. We apply Dinkelbach’s transform to solve Problem 5.5.20 and find an upper
bound of𝑅′𝑚𝑎𝑥. To do so, we need to find a distribution𝑝(𝑥) that maximizes (𝐻(𝑌)−𝐻(𝛿))−𝑞𝑖𝑇𝑎𝑣𝑔
for each iteration (Step 2 of the algorithm). We begin with analyzing the concavity of the target
function by examining its individual components. The first term,𝐻(𝑌), is the entropy of the output
symbols and is a concave function of 𝑝(𝑦) [215]. Since 𝑝(𝑦) is a linear function of 𝑝(𝑥) (i.e.,
𝑝(𝑦) = ∑𝑥 𝑝(𝑦|𝑥)𝑝(𝑥)), 𝐻(𝑌) is also a concave function of 𝑝(𝑥). The second term 𝐻(𝛿) is a
constant for a given random noise distribution. The last term, 𝑇𝑎𝑣𝑔, is a linear function of 𝑝(𝑥) by
the definition of 𝑇𝑎𝑣𝑔 (Equation 5.5.7). Therefore, the target function (𝐻(𝑌) − 𝐻(𝛿)) − 𝑞𝑖𝑇𝑎𝑣𝑔 is
concave and can be optimized with a standard concave programming method.
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We implement the optimization using PyTorch’s [224] Adam optimizer [225] and have observed
convergence. We then guess a tight upper bound of 𝑅′𝑚𝑎𝑥 with 𝑞′ = 𝑞𝑛 + 𝛿 and use the same
optimizer to empirically verify that 𝐹(𝑞′) < 0 after 10,000 iterations. We leave proving 𝐹(𝑞′) < 0
as an open problem for future work.

5.6 DISCUSSION

In this section, we describe some aspects related to the operation of Untangle.

5.6.1 Timing-Dependent Dynamic Instruction Sequences

In Section 5.5.2, we removed Edge 3⃝ in Figure 5.2 and made the resizing action sequence de-
pend not on program timing but only on the retired dynamic instruction sequence of the execution.
However, in some cases, this is not enough to eliminate the effect of timing because the dynamic
instruction sequence itself depends on program timing. This case may happen, e.g., in parallel
programs, where the timing of when a thread attempts a synchronization operation may result in
different outcomes: repeated spinning or proceeding past the synchronization. It may also happen
in single-threaded programs, where the thread may check the current time and take different paths
based on the result.
To handle this case, the code regions with these timing-dependent dynamic instruction sequences

need to be annotated, so that one can exclude their contribution when measuring the utilization
metric and exclude their instructions when quantifying execution progress. The techniques used
by existing analysis tools that detect secret-dependent control and data flow in a program can be
used as a basis to identify and annotate these timing-dependent sequences. For example, one can
treat the data read inside a critical section or the return value of a get-time system call as a secret.
We consider any further analysis of this issue the subject of future work.

5.6.2 Other Attacks

A powerful attacker can replay the victim programmany times, gaining additional information at
every replay from the scheduling leakage. However, the operating system can use the upper bound
of the victim program’s leakage rate as computed by Untangle (Equation 5.5.9) to keep accumu-
lating the victim program leakage across the multiple runs. When the accumulated leakage across
runs reaches a user-defined threshold, the system prevents the victim program from performing
any further resizes. From then on, the performance of the program will decrease, but there will be
no more leakage.
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Figure 5.9: An active attacker that interacts with the victim.

The attacker can also actively interact with the victim, as illustrated in Figure 5.9. In this exam-
ple, the victim is in a steady state and decides to MAINTAIN at assessment 1⃝. Since MAINTAIN is
invisible to an attacker, our optimized covert channel model can leverage it to further bound the
scheduling leakage (Section 5.5.3). However, before the victim makes the next assessment, the
attacker can put a high pressure on the shared resources to “squeeze” the victim partition. This
strategy can force the victim to perform an attacker-visible action EXPAND at the next assessment
( 2⃝), incurring a higher scheduling leakage rate. As a result, the user-defined leakage threshold will
be reached sooner, which can disable further resizing and hurt execution performance, but cannot
violate the security guarantees discussed in Section 5.4, as the leakage will not exceed the thresh-
old. Note that an active attacker cannot cause action leakage in Untangle. The reason is that even
if the action sequence changes, it is not due to secret values and, therefore, there is no action leak-
age. The change is due to the attacker actions, which cannot affect the victim’s timing-independent
resource utilization metric at the points of assessment.

5.6.3 Partitioning Other Hardware Resources

In Section 5.3 and 5.5, we mainly use the last-level cache (LLC) as an example of resource of
interest. However, Untangle is a general framework and it can be applied to different hardware re-
sources. To applyUntangle to a new type of resource, we first need to define a timing-independent
utilization metric for that resource (Section 5.5.2). For example, we can trivially extend the LLC
utilization metric to the TLB. Another example of resource of interest is functional units shared by
two SMT threads [213, 226], where we can use the fraction of the retired instructions that utilize a
certain type of function unit as a metric. Next, we also need to extend the static analysis to identify
the secret-dependent usage of the new resource of interest. For the TLB, we can reuse the static
analysis for caches [109, 110, 111, 113]; for function units, an analyzer that detects secret-dependent
control flow suffices.
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5.6.4 Extending the Threat Model

Untangle assumes a peer security model, where all programs are mutually distrusting and in the
same security level (Section 5.4). It is possible to extend Untangle to support a more complex
security lattice that is also tiered. Under this model, information flow from a lower-tiered program
(𝐿) to a higher-tiered program (𝐻) is allowed, but not vice versa. As a result, program 𝐿 can
take resizing actions that claim resources from or free resources to 𝐻 without counting towards
the leakage thresholds of both programs. However, there is one caveat: 𝐿’s resizing can affect
the timing of 𝐻 due to the change of available resources. This timing change in 𝐻 can be secret-
dependent and observed by 𝐿 through other observable events (e.g., termination of𝐻). Untangle’s
covert channel model can be adapted to measure this type of leakage.

5.6.5 Using Existing Static Analyses for Annotation

Recall from Section 5.5.2 that we need to annotate all instructions that have secret-dependent
resource usage and all instructions that are control-dependent on secrets. The main challenge of
using existing analyses [109, 110, 111, 113] for annotation is their scalability, since they use static
analysis to ensure soundness. According to the literature, all these analyses can analyze cryptog-
raphy libraries. Besides that, Cacheaudit [111] also analyzes sorting primitives and Casym [109]
analyzes database applications (e.g., PostgreSQL [227]). These libraries and applications can pro-
cess sensitive information. For applications that are beyond the capability of these tools, one can
use manual inspection assisted by these tools to generate conservative but sound results for Untan-
gle—e.g., by applying analyses on a manually-selected portion of the program. In this case, the
performance of applications may decrease due to the conservativeness of the analysis.

5.7 HARDWARE IMPLEMENTATION

This section discusses a potential implementation of key aspects of theUntangle hardware. Sim-
ilar to the previous discussion, we use LLC partitioning as an example. We do not explore a full
implementation because the focus and the novelty of this chapter is in the Untangle framework.

Transmitting the Annotations to the Hardware. There are several possible ways to transmit
the annotations to the underlying Untangle hardware. Intuitively, we can re-purpose a currently-
unused instruction prefix to mark the relevant instructions. A similar approach is used by Intel for
lock elision [130]. However, this approach can generate bloated binaries if many instructions are
annotated. An alternative approach is to introduce two new instructions that flag the start and the
end of a secret-dependent code region. Finally, we can also introduce a special bit in the page table
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to coarsely annotate pages that contain secret-dependent code [228]. The latter approach does not
require recompilation and can be applied to legacy programs.

Monitoring LLC Utilization. Many prior works have proposed various ways of monitoring LLC
utilization [104, 105, 214]. We describe one possible mechanism that we use in the evaluation.
The mechanism is similar to UMON [104], which assumes that the partition size is chosen from
a pre-defined list of supported sizes. At a high level, for each domain, at runtime, the mechanism
simulates memory accesses with each possible partition size, and measures the corresponding num-
ber of LLC hits. Then, during a resizing assessment, the monitor picks the size for each domain
that maximizes the number of LLC hits across all domains. To satisfy the requirements of a timing-
independent utilization metric, the monitor does not consider memory instructions that are data-
or control-dependent on secrets. In addition, it only considers the memory accesses resulting from
retired memory instructions and in program order (Section 5.5.2).
The proposed mechanism can be implemented with a set-associative hardware table that selec-

tively simulates memory accesses to only certain cache sets. This hardware table only contains tags
but not data. When a public load or store to one of the monitored sets retires, the table is accessed.
Memory accesses that would hit in the private caches are filtered out.

Measuring Scheduling Leakage at Runtime. Recall from Section 5.5.3 that we leverage consec-
utive MAINTAIN actions, which are invisible to the attacker, to further reduce the bound on schedul-
ing leakage rate. However, it is impractical to compute the optimized scheduling leakage rate at
runtime, since it needs to generate a new 𝑅𝑚𝑎𝑥, and this involves a computation-intensive algo-
rithm (Section 5.5.3). Therefore, we use a small hardware table that stores pre-computed leakage
rates. Specifically, table entry 𝑖 stores the leakage rate 𝑅𝑚𝑎𝑥𝑖 , corresponding to when 𝑖 consecutive
MAINTAINs occur. At runtime, if the victim chooses MAINTAIN𝑚 consecutive times, we conserva-
tively assume that the next action is not MAINTAIN and use the rate 𝑅𝑚𝑎𝑥𝑚 to compute the leakage
for that resizing. If the next action turns out to be another MAINTAIN, we switch to the lower rate
𝑅𝑚𝑎𝑥𝑚+1 . Finally, if 𝑚 exceeds the table capacity, we conservatively use the rate of the entry for
the maximum number of MAINTAINs considered.

5.8 EXPERIMENTAL METHODOLOGY

We use last-level cache (LLC) partitioning as an example to demonstrate that Untangle can
offer flexibility and better performance than static partitioning, and significantly less leakage than
prior dynamic partitioning schemes. We choose the LLC as the resource of interest because it is a
commonly-exploited hardware resource, and there are many prior LLC partitioning schemes [57,
59, 60, 61, 104].
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Table 5.3: Parameters of the simulated architecture.

Parameter Value
Architecture 8 out-of-order x86 cores at 2.0GHz
Core 8-issue, 4-commit, no SMT, 72 load queue en-

tries, 56 store queue entries, 224 ROB entries,
LTAGE branch predictor

Private L1-I & L1-D cache 32 kB, 64B line, 8-way, 2 cycle round trip
(RT) latency

Shared L2 cache (LLC) 16MB (2MB per slice), 64B line, 16-way, 8
cycles RT latency

DRAM 50 ns RT latency after L2
Supported partition sizes for
a domain

128 kB, 256 kB, 512 kB, 1MB, 2MB, 3MB,
4MB, 6MB, 8MB

Monitor window𝑀𝑤 1M LLC references

Table 5.4: Partitioning schemes evaluated.

Scheme Description
STATIC Static partitioning. Each domain uses a 2MB partition
TIME Dynamic partitioning. Assessing resizing every 1ms
UNTANGLE Dynamic partitioning. Assessing resizing every 8M retired

instructions with a cooldown time of 1ms
SHARED No partitions. All domains share the 16MB LLC

Following prior work [57, 59, 60], we use set partitioning. We assume a simple design where the
size of a partition is chosen from a pre-defined list of 9 choices. We use the mechanism discussed
in Section 5.7 to monitor LLC utilization and guide resizes. The monitor only considers the past
𝑀𝑤 LLC references made by retired memory instructions at the time of an assessment, to focus on
the program’s most recent LLC utilization.

Configurations & Schemes. We model an 8-core system (Table 5.3) using cycle-level simula-
tions with gem5 [230]. We consider four LLC partitioning schemes (Table 5.4). The baseline
scheme is STATIC, which partitions the LLC statically, giving 2MB to each domain. We evaluate
two dynamic partitioning schemes: TIME is similar to previous ones [104, 105, 213, 214] that make
resizing assessments at a fixed time interval (1ms interval in our configuration); UNTANGLE ap-
plies our mitigations described in Section 5.5. UNTANGLE makes resizing assessments every 8M
retired instructions and its minimum wait time between resizes is 1ms. We use this configuration
for UNTANGLE to match the performance of TIME by performing resizing assessments at a similar
frequency. The random delay in UNTANGLE follows a uniform distribution between [0, 1ms). Both
TIME and UNTANGLE start with a partition size of 2MB. Finally, SHARED is an insecure configura-
tion that uses a shared LLC without partitioning.
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Table 5.5: OpenSSL [229] cryptographic benchmarks.

Name Description
Chacha20 Stream cipher, encrypt 10 kB payloads
AES-128 Block cipher with a 128-bit key, encrypt 10 kB payloads
AES-256 Block cipher with a 256-bit key, encrypt 10 kB payloads
SHA-256 Digest function, compute 10 kB payloads
RSA-2048 RSA signing with a 2048-bit key
RSA-4096 RSA signing with a 4096-bit key
ECDSA ECDSA signing using curve Secp256k1
EdDSA EdDSA signing using curve Ed25519

Workloads. To evaluate workloads that have both secret-related and public parts, we build work-
loads composed of one SPEC17 benchmark [231] and one cryptographic benchmark fromOpenSSL
3.0.5 [229] (Table 5.5). Both benchmarks share the same domain and hence use the same LLC par-
tition. Since we target a typical workload that spends most of its execution time in the public part,
we repeatedly run in a loop 1M instructions from the cryptographic benchmark and then 10M
instructions from the SPEC17 benchmark. Both benchmarks make forward progress. We conser-
vatively assume that all instructions from the cryptographic benchmark are secret-dependent. We
do not set a leakage threshold for a workload; we allow it to freely resize and then measure its
leakage.
For SPEC17, we use the reference input size. We simulate all 36 SPEC17 benchmarks.2 For each

SPEC17 benchmark, we use SimPoint [232] to select a representative slice of 500M instructions.
We study each SPEC17 benchmark’s sensitivity to LLC size by running it with every supported par-
tition size and normalize its instruction-per-cycle (IPC) to the IPC with an 8MB partition (i.e., the
maximum partition size). The study is detailed in Section 5.12. We neglect the crypto benchmarks
because they have much smaller LLC use. We then define the adequate LLC size of a benchmark
as the minimal LLC size that allows the benchmark to reach a normalized IPC of at least 0.9. If
a benchmark has an adequate LLC size higher than 2MB (i.e., the STATIC partition size), we clas-
sify it as LLC-sensitive (8 benchmarks in total); otherwise, it is LLC-insensitive (28 benchmarks in
total).
Since we simulate an 8-core system, we first randomly select a mix of eight workloads (2

LLC-sensitive and 6 LLC-insensitive). Then, from this base mix, we randomly replace two LLC-
insensitive workloads with two LLC-sensitive ones to generate a new mix. We repeat this change
until there are no LLC-insensitive workloads in the mix. We run our experiments on each mix.
Next, we repeat this process with different base mixes to cover all possible workloads. For each
experiment, we warm up the system for 5ms. Then, we simulate the mix of workloads until each

2The same SPEC application with another input is a different benchmark.
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workload finishes its slice (500M instructions from SPEC and 50M from crypto). When a work-
load finishes, if there are other running workloads in the system, the finished workload maintains
its pressure on the LLC, but does not update the statistics that we collect.

Measuring the Leakage. We measure the leakage in TIME with log |𝒜| bits per assessment, where
|𝒜| is the number of supported resizing actions (Section 5.3.3). For UNTANGLE, we use the leakage
model proposed in Section 5.5 with the optimization discussed in Section 5.5.3.
We compare TIME with 1ms assessment interval against UNTANGLE with 𝑇𝑐 = 1ms, which

corresponds to 8M retired instructions between assessments. We report the leakage per assessment
of a workload under each scheme. Leakage per assessment determines the number of assessments
that a workload is allowed under a leakage threshold. The lower the leakage per assessment is,
the more assessments the scheme can make. Because TIME and UNTANGLE use different resizing
schedules, the same workload can have different number of resizing assessments under different
schemes, in spite of running the same number of instructions. The total leakage from an execution
is proportional to the number of resizing assessments during the execution.

5.9 EVALUATION

We evaluate 16 workload mixes in total. Due to the similarity between mixes, we only show in
Figure 5.10 the results of 4 selected mixes. Section 5.12 includes the results of the rest of mixes.
In Figure 5.10, each group of three charts corresponds to one mix. The top-left group (Mix

1) is for a mix with 2 LLC-sensitive workloads (shown in bold). As we move from left to right
(Mix 2), and then from top to bottom (Mix 3 and Mix 4), we replace 2 non LLC-sensitive SPEC17
benchmarks with 2 LLC-sensitive SPEC17 benchmarks, until we reach a mix with all 8 LLC-
sensitive benchmarks. In the title of each group, we show the total LLC demand as the sum of
the adequate LLC size of all the workloads in the mix. In a given group, the bottom-most chart
shows the IPC of every workload and scheme—normalized to STATIC. The middle chart shows
the leakage per assessment in bits for TIME and UNTANGLE. Finally, the topmost chart shows the
distribution of partition size measured at intervals of 100µs. In that chart, the thick short bar covers
the first to third quartile range; the thin long bar is the minimum and maximum range; the white dot
is the median of the partition sizes. Note that the figure has a non-linear y-axis, and each dashed
horizontal line corresponds to a supported partition size listed in Table 5.3.
Consider the top-left group of charts in Figure 5.10. It shows Mix 1, which has 2 LLC-sensitive

workloads and a total LLC demand from all the 8 workloads equal to 14.6MB. There is enough
LLC for every workload. Under both TIME and UNTANGLE, the two LLC-sensitive workloads,
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Mix 1: 2 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 14.6MB
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Mix 3: 6 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 33.4MB
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Figure 5.10: Comparing different partitioning schemes according to: IPC normalized to STATIC
(bottom-most row of each group of three charts), leakage per assessment (middle row), and distri-
bution of partition size (topmost row). The bars correspond to different workloads, where bolded
workloads are LLC-sensitive.

gcc_23 and parest_0, attain high speedups over STATIC, and even slightly outperform SHARED.
The remaining LLC-insensitive workloads experience no slowdown, in spite of some of them us-
ing partitions smaller than the 2MB of STATIC (see top chart). Overall, the system-wide speedup
(i.e., the geometric mean of IPCs) of TIME and UNTANGLE over STATIC is 1.14. SHARED (i.e., no
partitioning) has a lower speedup of 1.12 because of cache conflicts between workloads.
Since the dynamic partitioning scheme in our evaluation supports 9 different actions (Section 5.8),

TIME leaks log 9 ≈ 3.2 bits per assessment for every workload (middle row chart). Based on our
measurements, the leakage per assessment in UNTANGLE is at most 1.3 bits per assessment, and on
average 0.4 bits per assessment.

3To refer to a workload, we use the SPEC17 application name plus a number for the input.
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Consider now the top-right group of charts in Figure 5.10. It shows Mix 2, which replaces
deepsjeng_0 and gcc_3 from Mix 1 with mcf_0 and roms_0. The Mix 2 workloads demand
23.5MBof LLC in total. Due to the increased total LLC demand, gcc_2 receives a smaller partition
than in Mix 1, with a median size of 4MB (top chart). As a result, its speedup is now lower than
in Mix 1, namely 1.54 under TIME and 1.49 under UNTANGLE. parest_0 and mcf_0 attain good
speedups, but roms_0 does not translate its higher cache use into performance. Overall, TIME
and UNTANGLE deliver a system-wide speedup of 1.14 and 1.13 respectively, while SHARED has a
speedup of 1.08. Lastly, UNTANGLE has a leakage per assessment of 1.7 bits at most and 0.6 bits on
average, while TIME leaks 3.2 bits per assessment.
The bottom-left group of charts in Figure 5.10 shows Mix 3, which includes two more LLC-

sensitive workloads: lbm_0 and wrf_0. These 8 workloads demand 33.4MB of LLC, which is
more than twice the available LLC. In this over-committed setting, three LLC-sensitive workloads
have their demand fulfilled under TIME and UNTANGLE: gcc_2, parest_0, and mcf_0. Also, the
rest of workloads do not suffer slowdown when compared to STATIC. Overall, TIME, UNTANGLE,
and SHARED deliver a system-wide speedup of 1.14, 1.13, and 1.12 respectively.
For the Mix 2 and 3 workloads, we start to see an increase of leakage per assessment under

UNTANGLE. The reason is that the workloads havemore attacker-visible resizing actions that change
the partition size, due to the high LLC pressure. In Mix 3, UNTANGLE has a maximum leakage per
assessment of 1.8 bits and 0.7 bits on average.
In Mix 4 (bottom-right group of charts), all 8 workloads are LLC-sensitive. They demand a

total LLC of 39.0MB. Under this extreme LLC pressure, TIME and UNTANGLE can still fulfill three
LLC-sensitive workloads. However, some of the remaining workloads start to suffer slowdown.
Overall, both TIME and UNTANGLE have a system-wide speedup of 1.11, while SHARED has a lower
speedup of 1.07. The leakage per assessment in UNTANGLE increases to 2.0 bits in the worst-case
workload and 0.9 bits on average. As usual, TIME leaks 3.2 bits per assessment.
To summarize, TIME and UNTANGLE provide nearly the same speedups over STATIC, but UNTAN-

GLE leaks information at a significantly lower rate. SHARED delivers slightly lower speedups due to
cache conflicts between workloads. In UNTANGLE, it can be shown that, of all reassessments across
mixes 1–4, 91% are MAINTAIN.

Total Leakage. Table 5.6 summarizes the leakage of the selected mixes under TIME and UNTAN-
GLE. The table shows both the average leakage per assessment and the average total leakage per
workload. Across the mixes, the leakage per assessment under UNTANGLE is 78% lower than under
TIME.

Leakage of UNTANGLE under an active attacker. A powerful active attacker can put high pressure
on the shared LLC, forcing the victim to make an attacker-visible resizing action at every single
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Table 5.6: Leakage of Mixes 1-4 under TIME and UNTANGLE.
TIME UNTANGLE

Avg. leakage
per assessment

Avg. total
leakage

Avg. leakage
per assessment

Avg. total
leakage

Mix 1 3.2 bits 637.6 bits 0.4 bits 42.3 bits
Mix 2 3.2 bits 829.7 bits 0.6 bits 57.7 bits
Mix 3 3.2 bits 979.9 bits 0.7 bits 72.7 bits
Mix 4 3.2 bits 1,084.1 bits 0.9 bits 85.6 bits

assessment (Section 5.6.2). Then, the victim leaks at a higher rate. To study this environment, we
measure the leakage under UNTANGLE without the optimized covert channel model of Section 5.5.3.
We find that the average leakage per assessment is 3.6 bits, averaged across all the workloads from
all the mixes. This leakage is higher than with the optimization (0.7 bits). This worst-case leakage
rate is very rare in a benign execution. However, even if it occurs, Untangle still upholds the secu-
rity guarantees: at this increased leakage rate, the user-defined leakage threshold will be reached
sooner, which will disable further resizings and, at worst, only hurt performance. This is not a
limitation of Untangle, since an active attacker can always slow down the victim by forcing it to
use the smallest partition.

5.9.1 Sensitivity Study

In this subsection, we conduct two additional sensitivity studies by varying the resizing interval
and the leakage budget of dynamic LLC partitioning schemes, including TIME and UNTANGLE.

Resizing intervals. Recall that in our default configuration, TIME resizes every 1 millisecond and
UNTANGLE resizes every 8 million retired instructions (Section 5.8). In this study, we examine the
system’s behaviors under a longer resizing interval. Specifically, we scale the resizing intervals of
both TIME and UNTANGLE by a factor of 𝑠—i.e., TIME resizes every 𝑠 milliseconds and UNTANGLE
resizes every 8𝑠 million retired instructions. Additionally, we scale the monitoring window𝑀𝑤 to
𝑠 million LLC references. Finally, for UNTANGLE, we set the minimum wait time between resizes
to 𝑠milliseconds and sample the random resizing action delay from a uniform distribution between
[0, 𝑠milliseconds). We use 𝑠 ∈ {1, 2, 4, 7.5, 10} in this study.
Figure 5.11 shows the system-wide speedup of Mixes 1–4 under TIME and UNTANGLE when

varying the resizing interval scale 𝑠. Each cluster of bars corresponds to a specific mix and scheme.
For bars within each cluster, the resizing interval scale 𝑠 increases from the left to right. Overall,
for the SPEC17 workloads that we used, both TIME and UNTANGLE have only small fluctuations in
speedups when increasing 𝑠. This is because each SPEC17 benchmark runs for about ten minutes
on native machines while the simulation can only run for hundreds of milliseconds due to the
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Figure 5.11: System-wide speedup over STATIC under different mixes and schemes when scaling
the resizing intervals by 𝑠.

resource and simulator constraints. As a result, many SPEC17 benchmarks have relatively stable
cache usage behaviors during the simulation period, making these benchmarks insensitive to the
resizing interval. Note that some mixes show even slight increases in speedups under a larger 𝑠.
Upon inspection, this is mainly due to the increased monitoring window𝑀𝑤 under a larger 𝑠. This
increased𝑀𝑤 helps better capture LLC demand of LLC-sensitive workloads, such as gcc_2, thus
granting them more LLC space.
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Figure 5.12: Leakage per assessment averaged across Mixes 1–4 under TIME and UNTANGLE when
scaling the resizing intervals by 𝑠.

Figure 5.12 shows the leakage per resizing averaged acrossMixes 1–4 under TIME andUNTANGLE
when varying the resizing interval scale 𝑠. As usual, TIME leaks 3.2 bits per assessment, regardless
of 𝑠. For UNTANGLE, the average leakage per assessment increases from 0.7 bits at 𝑠 = 1 to 1.0 bits
at 𝑠 = 10. The reason for the increased leakage is that at a longer resizing interval, UNTANGLE is
less likely to choose to maintain the current partition size, so there are fewer chances to apply the
optimized covert channel model discussed in Section 5.5.3. Indeed, the portion of assessments that
result in a MAINTAIN decision decreases from 91% at 𝑠 = 1 to 78% at 𝑠 = 10.
Figure 5.13 shows the total leakage averaged across Mixes 1–4 under TIME and UNTANGLE when

varying the resizing interval scale 𝑠. The y-axis of the figure uses a logarithmic scale. As 𝑠 increases
from 1 to 10, the total leakage of both TIME and UNTANGLE is dramatically reduced from 880.1 bits
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Figure 5.13: Total leakage averaged across Mixes 1–4 under TIME and UNTANGLE when scaling the
resizing intervals by 𝑠. The y-axis uses a logarithmic scale.

to 89.6 bits and from 64.5 bits to 9.5 bits respectively. Overall, despite the increased leakage per
assessment at a larger 𝑠, UNTANGLE still has much less leakage per assessment and total leakage
than TIME at any evaluated 𝑠, while maintaining a speedup similar to TIME.
Note that, at all resizing interval scales, we observed unstable resizing behaviors that many

assessments result in unnecessary resizings—e.g., an application repeatedly gains and then quickly
loses a small amount of cache space. This behavior increases the scheduling leakage in UNTANGLE
but provides minimal performance gain. In Section 5.9.2, we discuss a preliminary investigation
into its main cause and a simple solution that effectively mitigates this behavior. As a result, the
leakage reduction of UNTANGLE over TIME could be even bigger.

Leakage budget. The discussion so far assumes a scenario in which no leakage budget is set. As
a result, we allow all applications to freely resize and report the leakage per assessment. In this
study, we examine the speedup of TIME and UNTANGLE under a fixed budget. When an application
exhausts its budget, it is forced to use its fair share of the LLC, which is 2MB in our setup, and the
application is prohibited from further resizing. An alternative policy to handle budget exhaustion
would be to simply maintain its partition size at the time of exhaustion and stop further resizing.
However, we prefer and use the policy of resetting the partition size to the fair share. This is because
in the alternative policy, if an application𝐴 occupies a large LLC partition at the time of exhaustion,
no other applications could ever claim any space from 𝐴 until 𝐴 terminates, even if 𝐴 later might
not need such a large partition, leading to resource starvation. To obtain the trade-off between
speedup and leakage, we vary the leakage budget 𝑏 ∈ {10 bits, 25 bits, 50 bits, 100 bits,∞}. As
using a short resizing interval can lead to rapid exhaustion of the leakage budget, especially under
TIME, we scale the resizing interval by 𝑠 = 10 in this study.
Figure 5.14 shows the system-wide speedup of Mixes 1–4 under TIME and UNTANGLE when

varying the leakage budget 𝑏. In Figure 5.14, each cluster of bars corresponds to a specific mix
and scheme. For bars within each cluster, the leakage budget 𝑏 increases from left to right, with the
rightmost bar representing the scenario where no leakage budget is set (𝑏 = ∞). Looking at the
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Figure 5.14: System-wide speedup over STATIC under different mixes and schemes when varying
the leakage budget 𝑏 and keeping 𝑠 = 10.

bars corresponding to TIME, we can see that the system-wide speedups are low when the leakage
budget is small. Indeed, with 𝑏 = 10 bits, TIME achieves speedups of merely 1.02, 1.02, 1.02,
and 1.01 in Mixes 1–4 respectively. This is because 𝑏 = 10 bits permits TIME only three resizing
assessments in our configuration. Only when 𝑏 = 100 bits, the speedups of TIME can match or
become close to the speedups under no leakage budget (𝑏 = ∞), depending on specific mixes.
Now looking at the bars corresponding to UNTANGLE, even under a tight budget of 𝑏 = 10 bits,

UNTANGLE achieves speedups of 1.09, 1.07, 1.07, and 1.05 in Mixes 1–4. With a budget of 𝑏 =
25 bits, UNTANGLE practically matches the speedups under no leakage budget (𝑏 = ∞). Overall,
for a small leakage budget, such as 𝑏 ≤ 50 bits, UNTANGLE always significantly outperforms TIME.
Although the performance differences between TIME and UNTANGLE become smaller as 𝑏 increases,

5.9.2 Discussion of Limitations & Future Work

Workloads with more dynamic behavior. As discussed in Section 5.9.1, many SPEC17 bench-
marks have relatively stable cache usage behaviors during the span of simulation, which is only
hundreds of milliseconds and is bounded by the simulator and computational resource constraints.
In the future, it would be interesting to increase the simulation time and evaluate Untangle in a
more dynamic environment, such as Function-as-a-Service [29], where containers constantly start
and terminate, or in an environment that groups latency-sensitive workloads with batch workloads.
One possible solution to overcome the limitation of simulation performance is to use FPGA-based
simulation, such as FireSim [233]. Additionally, besides normalized IPC, it would be interesting to
consider other performance metrics such as tail latency, which is likely more sensitive to infrequent
resizings. As the main contribution of this chapter is to propose a generic model for tightly bound-
ing and measuring information leakage in dynamic partitioning schemes, we leave this exploration
for future work.
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Limiting unnecessary resizings to further reduce the leakage under Untangle. Recall that we
observed that applications often suffer from unnecessary resizings that offer minimal performance
benefits but incur more scheduling leakage under Untangle (Section 5.9.1). This is mainly caused
by the greedy action heuristic in our setup, which tries to maximize the global cache hit count
across all applications (Section 5.8). As a result, the action heuristic will decide to resize even if
the global cache hit count under the optimal partitions is only marginally higher than that of under
the current partitions. Based on this insight, we now present a simple preliminary solution. The
intuition of the solution is to resize only if the global cache hit count under the optimal partitions,
denoted by 𝐻𝑜𝑝𝑡, is sufficiently higher than that of under the current partitions, denoted by 𝐻𝑐𝑢𝑟.
For example, we can set a threshold 𝜏 such that we resize only if (𝐻𝑜𝑝𝑡 − 𝐻𝑐𝑢𝑟)/𝐻𝑐𝑢𝑟 ≥ 𝜏.
We perform an evaluation of this preliminary solution with 𝜏 = 0.05 under resizing intervals

scales of 𝑠 = 1 and 𝑠 = 10 without setting a leakage budget. This solution is effective, as we
observe that the leakage per assessment averaged across Mixes 1–4 is reduced from 0.7 bits to
0.1 bits for 𝑠 = 1 and from 1.0 bits to 0.4 bits for 𝑠 = 10. Additional, it can be shown that using
𝜏 = 0.05 has no significant impact on system-wide speedups, while using 𝜏 = 0.1 can cause
performance losses in some mixes.
Generalizing from the unnecessary resizing problem, an interesting future direction to look into

is the interplay between the resizing benefits and cost in a dynamic partitioning system. Here,
the resizing cost can be information leakage, as in side-channel defenses, or simply the cost of
reconfiguring partition sizes, such as the required data movement when resizing cache partitions.
Based on the resizing cost, one might decide to avoid resizings that have low performance gains
and save the resizing opportunity for a later phase of execution. This objective is non-trivial to
achieve, especially in an environment with many applications and partitions. Potential solutions
could be derived from Multiple Input Multiple Output (MIMO) system control or online learning-
based approaches.

Leakage bounds under more resizing actions. Recall that in the LLC partitioning schemes eval-
uated, we support 9 possible resizing actions (Section 5.8). We expect future advanced dynamic
partitioning schemes to support a larger number of possible resizing actions. For example, a scheme
may offer many possible partition sizes to suit the diverse resource demands of cloud applications.
In this case, each operation that resizes the partition to a different size is a different resizing action.
Similarly, a scheme may partition 𝑛 types of resources—e.g., LLC, L2, TLBs, interconnect—at
the same time. If a resource type 𝑖 supports 𝑎𝑖 different resizing actions, the scheme will have up
to∏𝑖 𝑎𝑖 = 𝑎1 × 𝑎2 ×⋯× 𝑎𝑛 possible resizing actions.
The leakage bound of the conventional TIME grows when the number of possible resizing actions

increases. This is because we can only conservatively bound its action leakage to log |𝒜|bits per
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resizing, where |𝒜| is the number of possible actions. Considering again the example of partitioning
𝑛 types of resources, the action leakage in conventional systems would be bounded by log∏𝑖 𝑎𝑖 =
∑𝑖 log 𝑎𝑖 = log𝑎1 +⋯+ log𝑎𝑛bits per resizing. The leakage grows quickly with respect to 𝑛.

Number of resources
under partitioning

Le
ak

ag
e 

bo
un

d

TIME
UNTANGLE

Figure 5.15: Leakage bounds as the number of resources under partitioning grows.

Using Untangle, the action leakage is independent of program timing. Based on that, Untangle
uses program analysis and annotation to eliminate the action leakage all together. Then, the only
remaining leakage is the scheduling leakage. Since the scheduling leakage rate is bounded by the
maximum data rate of the covert channel, which only depends on when a resizing action occurs
instead of what action is chosen, the scheduling leakage in Untangle has a fixed upper bound
regardless of how many resizing actions are possible. Figure 5.15 illustrates the trend of leakage
bound obtained by UNTANGLE and TIME as the number of resources under partitioning grows.

5.10 RELATED WORK

Types of Hardware Defenses. Hardware techniques to block microarchitectural side-channels
fall into two categories. Randomization-based schemes [44, 45, 46, 47, 48, 49, 50, 51] attempt to
obfuscate victim resource usage. These schemes offer high performance, but not comprehensive
security guarantees. Partitioning-based schemes [53, 54, 55, 56] provide comprehensive security
guarantees, but static partitioning incurs significant performance overhead [53].

Secure Dynamic Resource Partitioning. SecDCP [53] dynamically partitions cache resources
based on a tiered security model: behaviors of sensitive programs cannot influence resizing deci-
sions; only non-sensitive programs do. This model does not apply to cases where all programs are
mutually distrusting and in the same security level (i.e., peers). In contrast, Untangle has a peer
security model.
SecSMT [213] dynamically partitions pipeline resources. It supports both the tiered and peer

security models. In the peer model, however, SecSMT only loosely bounds the leakage to 1 b per
assessment (for 2 possible resizing actions). This is leakage overestimation. In contrast,Untangle’s
leakage bounds are much tighter.

Quantifying the Leakage of Side Channels. Some works quantify the leakage of side channels
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in the absence of partitioning. Dynamic approaches examine specific victim executions and quan-
tify their leakage trace [108, 234, 235, 236, 237, 238]. Thus, these approaches cannot produce a
worst-case leakage bound. Other approaches use symbolic execution [110, 239] or abstract inter-
pretation [111, 112, 113]. Although these approaches are sound, they cannot quantify leakage that
depends on program timing.

5.11 CONCLUSION

This chapter presented Untangle, a framework for constructing low-leakage, high-performance
dynamic partitioning schemes. Untangle formally splits the leakage into leakage from deciding
what resizing action to perform and leakage from deciding when each resizing action occurs. Based
on this breakdown, Untangle makes two contributions. First, it introduces a set of principles for
constructing dynamic partitioning schemes that untangle program timing from the action leakage.
Second, Untangle introduces a novel way to model the scheduling leakage without analyzing pro-
gram timing. With these techniques, Untangle is able to quantify the leakage in a dynamic resizing
scheme in a tighter way than prior work.
We applied Untangle to dynamic partitioning of the last-level cache. On average, workloads

leak 78% less under Untangle than under a conventional dynamic partitioning approach, for ap-
proximately the same workload performance.

5.12 FIGURES: COMPLETE EVALUATION

The complete evaluation results are shown in Figures 5.16–5.22.
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Figure 5.16: LLC sensitivity study of all 36 SPEC17 benchmarks. IPCs are normalized to the IPCs
with an 8MB partition. LLC-sensitive benchmarks are bolded.
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Figure 5.17: Comparing different partitioning schemes for workloads Mix 5 and Mix 6.
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Figure 5.18: Comparing different partitioning schemes for workloads Mix 7 and Mix 8.
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Figure 5.19: Comparing different partitioning schemes for workloads Mix 9 and Mix 10.
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Figure 5.20: Comparing different partitioning schemes for workloads Mix 11 and Mix 12.
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Mix 13: 6 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 32.4MB
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Figure 5.21: Comparing different partitioning schemes for workloads Mix 13 and Mix 14.
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Mix 15: 4 LLC-sensitive benchmarks
Total LLC size: 16MB; Total LLC demand: 19.9MB
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Figure 5.22: Comparing different partitioning schemes for workloads Mix 15 and Mix 16.
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CHAPTER 6: Taming Speculative Loads in Secure Processors

6.1 INTRODUCTION

In this and the following chapter, we shift our focus to defending against speculative side-channel
attacks (Section 2.3). These attacks are concerning to cloud vendors because an unprivileged,
malicious cloud user can exploit them to access arbitrary memory of privileged software such as
the OS kernel or hypervisor [240], which shares the physical hardware with the malicious user.
Given the danger of speculative side-channel attacks, many defense schemes have been pro-

posed. Such schemes range from hardware-based (e.g., [54, 116, 118, 119, 120, 121, 122, 123, 124,
125, 241]) to software-only (e.g., [242, 243, 244, 245]) and hybrid (e.g. [246, 247, 248]). They pre-
vent the early, unprotected execution of transmitters—i.e., instructions whose micro-architectural
resource usage may reveal secret information [54, 116, 117]. While there are many types of trans-
mitters, the most important one is loads, which, depending on the address they read, exercise dif-
ferent parts of the memory hierarchy.
A central idea in defense schemes against speculative execution attacks is an instruction’sVisibil-

ity Point (VP) [118] (Section 2.3.3). An instruction reaches its VP when it is no longer vulnerable
to pipeline squashes that are relevant to the threat model considered. For example, assume a threat
model based on Spectre [18] and that transmitters are loads. A load reaches its VP when it can no
longer be squashed by any branch misprediction—i.e., when all of its older branches are resolved.
Each instruction transitions from being pre-VP to reaching its VP, and then to becoming post-

VP. A transmitter cannot safely execute before it reaches its VP. For example, we can prevent
the load from executing by inserting a fence before it. Sometimes, a defense scheme provides
special protection that allows a pre-VP transmitter to execute. For example, with the InvisiSpec
scheme [118], pre-VP loads can be issued invisibly, but need to be followed by a second access
later on.
When the transmitter reaches its VP, it can execute without protection. For example, once all

the branches older than the load are resolved, we can remove the fence. As instructions reach their
VPs and execute, they enable younger instructions to reach their own VPs. Hence, we intuitively
say that “the older instructions pass the VP downstream.”
The stall or protection of pre-VP transmitters slows down program execution over a conven-

tional, unsafe processor. For example, pre-VP loads are either delayed by fences or have to be
issued twice.
Themore aggressive the threat model is, themore costly protecting pre-VP instructions becomes.

Consider the Comprehensive threat model [246], where a load L reaches its VP only when it can
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no longer be squashed for any reason. In this model, reaching the VP requires that: (i) all branches
older than L are resolved; (ii) neither L nor any older instruction can suffer exceptions; (iii) there
is no unresolved older load or store that L or an older load could alias with; and (iv) neither L nor
any older load can cause a memory consistency violation (MCV). Schemes that protect L until all
of these conditions are true have substantial overhead.
Based on this discussion, a new approach to reduce the overhead of defense schemes against

speculative execution attacks could be to try to speed-up the advance of the VP toward young
instructions. If a technique could be found to do this, then potentially all the defense schemes
could have lower overhead.
In this chapter, we propose such a technique, which we call Pinned Loads. To conceive it, we

first examine, under the Comprehensive threat model, the delay induced to the VP advance by each
of the four conditions listed above. We use the Comprehensive model because it is the most general
one and covers recent attacks, includingMCV-based attacks [20, 249]. In our analysis, we find that
what delays VP progress the most is ensuring that no MCV is possible. This condition, therefore,
adds the most overhead to safe program execution.
Based on this observation, we design Pinned Loads as a microarchitecture that tries to make

loads invulnerable to MCVs as early as possible, therefore speeding-up VP progress. In our de-
sign, we assume the TSO memory consistency model [250, 251]. Recall that, under TSO, a load
is conservatively flagged as causing an MCV and squashed when the core receives a coherence
invalidation for the line accessed by the load or when the line is evicted from the cache. Hence,
given a load L that has met all the conditions required to reach the VP except for the guarantee
of no MCVs, Pinned Loads tries to ensure that no invalidation or eviction of L’s line is possible
anymore. If Pinned Loads can ensure this, we say that it pins L in the reorder buffer—making L
unsquashable and moving L to its VP. If we manage to do this for many loads, the VP makes fast
progress and the execution speeds-up.
In this chapter, we also describe the hardware needed for Pinned Loads. Further, we propose two

possible designs of Pinned Loads, which offer different tradeoffs between hardware requirements
and delivered performance. Finally, we extend several popular defense schemes for speculative
execution with Pinned Loads. As we run the SPEC17, SPLASH2, and PARSEC benchmark suites
with them, we observe a substantial reduction of their execution overhead. Indeed, the average
execution overhead of defense schemes that (i) either place fences before loads, (ii) or stall specu-
lative loads that miss in the L1 (Delay-On-Miss [120, 121]), (iii) or stall speculative loads whose
arguments are tainted (STT [116]) decreases by about 50%. Specifically, on SPEC17, Pinned
Loads decreases the execution overhead of the fence-based defense from 112.6% to 51.3%, of
Delay-On-Miss from 35.8% to 15.3%, and of STT from 24.8% to 13.2%; on SPLASH2/PARSEC,
Pinned Loads decreases the execution overhead of the defense schemes from 113.1% to 46.4%,
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from 15.8% to 7.6%, and from 11.3% to 8.1%, respectively.
In summary, the chapter makes the following contributions:

• Introduces Pinned Loads, a novel technique to reduce the overhead of speculative-execution
defense schemes by speeding-up VP progress.

• Presents the mechanisms behind Pinned Loads.
• Describes two different designs of Pinned Loads.
• Evaluates multiple Pinned Loads-extended popular defense schemes on an extensive applica-

tion set.

6.2 BACKGROUND: MEMORY CONSISTENCY VIOLATIONS (MCVS)

In a multiprocessor system, the memory consistency model defines the order in which a proces-
sor’s loads and stores are observed by other processors. When a store retires from the pipeline, its
data is deposited into the write buffer. From there, when the memory consistency model allows, the
data is merged into the cache, making it observable by all the other processors. In this chapter, we
say that a store is performed when its data is merged into the cache; we say that a load is performed
when it receives its data. In conventional, unsafe processors, loads can read from the memory
hierarchy and be performed before they reach the ROB head, and even out of order—i.e., before
older loads and stores in the ROB are performed. These out-of-order loads can lead to memory
consistency violations (MCVs) if another processor observes an order not allowed by the memory
consistency model.
A processor recovers from an MCV by using the instruction squash and rollback mechanism of

speculative execution [252]. We discuss how this is done for the Total Store Order (TSO) mem-
ory consistency model [250, 251], which is the one used by the x86 architecture and assumed in
this chapter. TSO forbids load to load reorderings (load→load), which is when a younger load is
performed before an older load to a different address. Implementations of TSO prevent observable
load→load reordering by ensuring that the value that a load reads when it is performed remains
valid when the load retires. This guarantee is conservatively maintained by squashing a load that
has performed, but not yet retired, if the processor receives a cache invalidation for the line read
by the load. Moreover, the load is also squashed if the line read by the load is evicted from the
cache before the load retires—since, on a subsequent external write, the cache may not receive an
invalidation.
Strictly speaking, cache line invalidations and evictions do not need to squash the oldest load in

the pipeline—since such load has not been reordered. A reorder can only occur when the line in
question has been read by a load L that is not the oldest load in the pipeline, and then the hardware
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needs to squash L and all its successor instructions. This is the design that we use in our evalua-
tion. However, for ease of explanation of our mechanism, we discuss the simpler implementation
where any load that has read a line that is invalidated or evicted triggers a squash. This is the
implementation used in Intel processors [20].
TSO also forbids load to store (load→store) and store to store (store→store) reorderings. Im-

plementations of TSO prevent them by merging a store with the cache hierarchy only after the
store instruction has retired, and by using a FIFO write buffer, ensuring that stores are drained in
program order.

6.3 PINNED LOADS: MAIN IDEA & IMPACT

6.3.1 Advancing the VP is Crucial

The Visibility Point (VP) is an important concept in defense schemes against speculative execu-
tion attacks. When an instruction reaches its VP, it becomes safe to execute without any protection.
Consider a load, which is the focus of this chapter. If the baseline defense is to place a fence before
a load, then when the load reaches its VP, the fence can be removed. If the defense is to issue
the load early invisibly, followed by a second access later [118], when a load reaches its VP, it is
unnecessary to issue the load twice anymore.
The conditions that determine when a load reaches its VP depend on the threat model used.

However, it is evident that any technique that can help a load reach its VP sooner will help speed-
up execution under practically any defense scheme against speculative execution attacks: loads
will execute sooner or with lower overhead, and will in turn enable subsequent loads to reach their
VPs sooner. Intuitively, the hardware will be “moving the VP to younger loads” faster.
There are some defense schemes that, using certain assumptions, allow the unprotected issue of

some loads that have otherwise not reached their VP—e.g., loads that have reached the Execution
Safe Point in InvarSpec [246] or loads whose arguments are not tainted by transiently-read data in
STT [116]. Even in these cases, enabling loads to reach their VP sooner is useful: the conditions
that enable such unprotected early load execution depend on older loads actually reaching their VP.
In this chapter, to keep the discussion simple, we will not discuss such “early safe” loads.

6.3.2 Focus on Memory Consistency Violations

For the Comprehensive threat model, Section 6.1 listed the four conditions necessary for a load
to be free of potential squashes and, therefore, reach its VP. To design an effective “VP-advancing”
technique, we need to understand how performance-limiting each of these conditions is in practice.
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To this end, we take a processor that places a load-stalling fence before each load, and consider
four possible times when to remove the fence—from typically earlier to later times. The times
are when no squash is possible due to: (i) branches (Ctrl Dep), (ii) branches or aliasing (Alias
Dep), (iii) branches, aliasing, or exceptions (Exception), and (iv) branches, aliasing, exceptions, or
memory consistency violations (MCV). Figure 6.1 shows the resulting execution overhead of the
environments (in a stacked manner) over a conventional unsafe processor. The processor is the one
shown in Table 6.1, and the programs are those in the SPEC17 [231] suite (single-threaded), and
in the SPLASH2 [253] and PARSEC [254] suites (with eight threads).
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Figure 6.1: Effect of each reason that delays reaching the VP.

Of all the conditions, ensuring that no MCV is possible is, by far, the one that delays reaching
the VP the most and, therefore, slows down execution the most. Waiting for branch resolution also
has a substantial, yet smaller impact, while waiting for alias resolution and exception-free state is
much less significant. Overall, as intuition suggests, while the absence of squashes due toCtrl Dep,
Alias Dep, or Exception is determined relatively soon, the absence of squashes due toMCV remains
unresolved until the load is close to the head of the ROB. Hence, this condition substantially delays
“moving the VP downstream” and, therefore, slows down program execution.
For this reason, in this chapter, we focus on making loads invulnerable to MCVs as early as

possible. We pick a load L that has met all the conditions to reach its VP except for guaranteeing
that 𝐿will not cause MCVs. Then, our goal is to Pin L in the ROB—i.e., to declare it unsquashable
due to MCVs and hence declare that it has reached its VP—as early as possible.
Recall from Section 6.2 that a load is conservatively identified as causing an MCV and squashed

when the core receives a coherence invalidation for the line accessed by the load or when the cache
evicts this line. Hence, to declare load L as Pinned, the hardware needs to guarantee that none of
these two events will occur for L.
Our proposed architecture, called Pinned Loads, guarantees it as follows. First, to guarantee that

there will be no squash of L due to invalidations, Pinned Loads delays incoming invalidations to
the line read by L until L retires. Since invalidations can only be delayed for a limited time period,
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the hardware also has to guarantee that L will eventually reach the ROB head and retire—at which
point, no more invalidation delays will be needed. Consequently, Pinned Loads can only declare
L as pinned if the core has enough resources to retire L and all the instructions older than L in the
pipeline—in particular, the write buffer needs to have enough entries to fit all the yet-to-complete
stores older than L.
Second, to guarantee that there will be no squash of L due to cache evictions, Pinned Loads

pins only loads that access cache lines that it can guarantee are non-evictable. To obtain such a
guarantee, Pinned Loads needs to reserve, for each core, a minimum number of lines𝑊 𝑑 per set in
the directory plus last-level cache (LLC). Furthermore, Pinned Loads knows the associativity𝑊 𝐿1
of the L1 cache. With this information, Pinned Loads only declares L pinned if the lines accessed
by L and by the set of already-pinned older loads: (i) do not overflow 𝑊 𝑑 for any directory plus
LLC set, and (ii) do not overflow 𝑊 𝐿1 for any L1 cache set. In addition, Pinned Loads refuses
to evict from its L1 cache and from the directory plus LLC any line that has been accessed by a
currently-pinned load. Such eviction request may be a self eviction initiated by the local processor
or a cross eviction initiated by another processor.
To keep the design simple, Pinned Loads: (i) pins all the loads that will eventually retire and (ii)

does it in strict program order. Further, no load can be pinned before it has generated its address,
since it can suffer an exception during address translation. After address translation, we assume
the load cannot suffer exceptions.

6.3.3 Potential Performance Gains

To understand the performance gains enabled by Pinned Loads, consider a ROB with three inde-
pendent loads. Recall that we assume a baseline processor implementation where even the oldest
load in the ROB can suffer an MCV. Figure 6.2(a) shows the behavior of the conventional, unsafe
processor. As denoted by the arrows, all three loads can be issued to memory in parallel. Fig-
ure 6.2(b) shows the behavior of a safe processor. In this case, a load can only be safely issued
when it reaches its VP. Generally, this occurs when the load is close to the ROB head. The result
is poor performance, as loads are issued late and only one load can be in progress at a time.
Consider now a safe processor augmented with Pinned Loads. We propose two designs, which

will be detailed later. To understand them, consider a load L that has met all the conditions to reach
the VP except for guaranteeing no MCVs. Our first design (Early Pinning) has special hardware
that determines whether there is enough space in the cache hierarchy and directory to hold the line
that L requests—given that there may already be other pinned loads. If the answer is yes, Pinned
Loads declares L pinned even before issuing L to memory, and “passes the VP downstream.” Our
second design (Late Pinning) is simpler and has no such special hardware. In this design, L is first
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Figure 6.2: Overlapping of loads in the reorder buffer (ROB).

issued tomemory. If L successfully brings the data to the L1 cache, hence proving that directory and
caches have space for the line, Pinned Loads declares L pinned and “passes the VP downstream.”
These two designs offer different tradeoffs between hardware requirements and performance.
The behavior of the safe processor augmented with Late Pinning is shown in Figures 6.2(c)-(e).

As shown in Figure 6.2(c), the oldest load reaches its VP (and issues to memory) earlier than in the
safe processor: when only an MCV could squash it. However, in reality, no MCV-induced squash
will occur: while the data has not returned, no MCV can occur by construction; and as soon as the
data arrives, Pinned Loads will pin it and hence ensure no MCV can occur. Assume that, when
the oldest load gets pinned, the second load reaches its VP. The second load then issues to memory
(Figure 6.2(d)) and, on reception of the line, gets pinned. The process repeats for the third load in
Figure 6.2(e). We see that, while loads are not issued in parallel as in the unsafe processor, they
are issued much earlier than in the safe processor.
The behavior of the safe processor augmented with Early Pinning is shown in Figure 6.2(f). In

this design, Pinned Loads can pin a load (and enable the next load to reach its own VP) even before
the load issues to memory. Hence, as shown in the figure, the VP “is passed downstream” quickly
and all the loads proceed in parallel. The result is safety and high performance.
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For completeness, Figure 6.2(g) shows the case when the second load is dependent on the first
one. The unsafe processor can issue the first and third loads in parallel. However, even the Early
Pinning design cannot match the performance of the unsafe processor. Indeed, the second load’s
address depends on the return value 𝑉 of the first load. Hence, the second load cannot be declared
pinned until 𝑉 is known and the load’s address is translated—since there is a risk of an address
translation exception. Since the second load is not pinned, the third one, although independent,
cannot be claimed as pinned and issue (Figure 6.2(h)).
If Pinned Loads is able to remove most of the stall due to MCVs in Figure 6.1, the resulting

performance may be close to that of a processor only stalling for branch resolution. In that case,
the performance of a safe processor under the Comprehensive threat model would be close to that
of a safe processor under the Spectre threat model.
If the processor supports the more aggressive implementation of TSO described in Section 6.2,

where cache line invalidations and evictions do not squash the oldest load in the ROB, a more
aggressive design of Late Pinning is possible. Specifically, as soon as the oldest load (i.e., ld1 in
Figure 6.2(c)) is free of all the other sources of squashes (i.e., branches, aliasing, and exceptions),
it issues and “passes the VP downstream”—since it cannot be squashed anymore. Hence, ld2 can
be issued while ld1 is still outstanding. Furthermore, when ld2 receives the data, it gets pinned, and
ld3 can be issued even if ld1 is still outstanding. Overall, while the safe baseline can have only one
outstanding load, this more aggressive design of Late Pinning can support two outstanding loads,
as long as one of them is the oldest one in the ROB—in addition to supporting the sequential issue
of multiple loads much earlier, as indicated before. This is the design we use in the evaluation.

6.4 THREAT MODEL

We assume the Comprehensive threat model and various baseline hardware defense schemes that
Pinned Loads augments for performance. The Comprehensive model is necessary to cover recent
attacks, including attacks related to memory consistency [20, 249] (Section 6.10). Examples of
baseline schemes that Pinned Loads can augment are those that protect pre-VP loads with blocked
execution [116, 241, 255], execution only if they hit in the L1 [120, 121], or invisible execution
that does not change the state of the cache hierarchy [118, 119, 122].
Pinned Loads does not modify the speculative execution security properties of the baseline de-

fense schemes. The reason is because Pinned Loads does not modify the definition of VP; it simply
enables loads to reach their VPs earlier.
Pinned Loads does not add new speculative side or covert channels. The reasons are: (i) a

load is pinned only if it satisfies all the conditions for reaching its VP except for the possibility
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of causing an MCV, and (ii) a pinned load is guaranteed not to cause an MCV. These combined
properties imply that, once a load is pinned, its retirement is guaranteed, and so any side-effects
of its execution cannot result in speculative leakage. In particular, this argument applies to any
new side-effects introduced by Pinned Loads itself (e.g., changes in the processing of coherence
invalidations or evictions). These side-effects are only a function of the pinned load’s operands,
and thus do not leak speculative information.
Pinned Loads does not address non-speculative side channels. It is well known that, in a multi-

threaded shared-memory environment, an attacker can exploit cache coherence states for timing-
based non-speculative side channels [256].

6.5 DESIGN OF PINNED LOADS

In this section, we describe the Pinned Loads design and present the Late and Early Pinning
variations. In Sections 6.6 and 6.7, we outline some implementation aspects, and compare to a
related design. In the following, we refer to a line that is accessed by a currently-pinned load as a
pinned line.
At its core, Pinned Loads: (i) delays incoming invalidations to pinned lines and (ii) prevents

cache evictions of pinned lines. In addition, it has to ensure that the processor has enough resources
to pin a load—i.e., enough write buffer entries for yet-to-complete stores, and enough cache and
directory space for all the pinned lines. Finally, it has to ensure that delayed stores make progress.
Note that Pinned Loads never pins loads younger than in-ROBMFENCE or LOCK instructions

because doing so would be incorrect. For example, pinning a load before an older lock is acquired
would be equivalent to binding the value returned by the load before the lock is acquired.

6.5.1 Pinned Loads Mechanisms

Delaying Invalidations to Pinned Lines. Processors that support TSO [250, 251] conservatively
avoid MCVs by squashing a yet-to-retire load issued by the processor when the L1 cache receives
an invalidation for the line read by the load. When an invalidation is received in L1, the Load
Queue (LQ) is snooped and, on finding a matching entry, the corresponding load and its successor
instructions are squashed.
Pinned Loads keeps a record of the pinned lines. Such a record only requires one bit in each LQ

entry, although other designs are possible (Section 6.6.1). When an invalidation arrives and the LQ
snoop finds it is directed to a pinned line, the hardware denies the invalidation.
Supporting this functionality requires a modification to the write transaction of the cache coher-
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ence protocol. Figures 6.3(a) and (b) show the conventional and thePinned Loadswrite transaction,
respectively. In the figure, Core 1 has brought the line to its L1 cache in state shared (S) with a
yet-to-retire load, and Core 2 issues a write to the line (arrow 0 ). In the conventional transaction
(Figure 6.3(a)), Core 2 issues a GetX request to the directory ( 1 ). The directory returns the line
plus the number of sharers to Core 2 ( 2 ), sends an invalidation to Core 1 ( 2 ), and enters a tran-
sient state that rejects other requests to the line. Core 1 invalidates its local copy of the line, snoops
its LQ, squashes its load to the line, and sends an ack to Core 2 ( 3 ). Core 2 then sends an Unblock
request to the directory ( 4 ), which exits the transient state and updates the sharers.

S → I

Core 1

1 GetX

Core 2

1 0

Sharer Bits

L1 L1

2 Inv 2 Data

3 Ack

4 Unblock

(a) Conventional

Directory Data

S

1 GetX

1 0

Sharer Bits

L1 L1

2 Inv 2 Data

3 Defer

4 Abort

(b) Pinned Loads

Directory Data

0 Write Core 1

Core 2
0 Write

Figure 6.3: Conventional (a) and Pinned Loads (b) write transaction.

In thePinned Loads transaction, when Core 1 receives the invalidation ( 2 ), the hardware snoops
the LQ before invalidating the cache line. On finding a match with a pinned line, the cache is not
invalidated, the load is not squashed, and a Defer message is sent to Core 2 ( 3 ). If Core 2 receives
a Defer from any sharer of the line, it aborts the write and sends an Abort to the directory ( 4 ). The
latter exits the transient state and does not change the sharer bits. Core 2 will now retry the write.
To ensure that Core 2 is able to eventually write, additional support is added in Section 6.5.1.

Ensuring Enough Write Buffer Entries. Delaying invalidations is a temporary mechanism ap-
plied until the pinned load reaches retirement. Hence, before Pinned Loads marks a load L as
pinned, it has to ensure that there are enough resources for L to reach retirement. One obvious
resource required is related to stores: there need to be enough write buffer entries to be able to hold
all the yet-to-complete stores that are older than L. This includes stores already in the write buffer
and stores not yet in the write buffer. The reason is that, for L to retire, all of its older stores should
be pushed into the write buffer.
If this condition is unmet, deadlock may ensue. To see why, consider the two cores in Figure 6.4.

Core 1 has retired a store to line 𝑥 to its write buffer. Its ROB contains another store and then a
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pinned load to line 𝑦. Core 2 has retired a store to line 𝑦 to its write buffer. Its ROB contains
another store and a pinned load to line 𝑥. Assume that 𝑙𝑑𝑥 and 𝑙𝑑𝑦 have loaded their data to the
L1 caches, and that the write buffers can hold a single write. In the write buffer of Core 1, 𝑠𝑡𝑥’s
attempt to write is denied by Core 2 because line 𝑥 is pinned by 𝑙𝑑𝑥 ( 1 ). Similarly, in the write
buffer of Core 2, 𝑠𝑡𝑦’s attempt to write is denied because 𝑙𝑑𝑦 is pinned. To make forward progress,
either 𝑙𝑑𝑥 or 𝑙𝑑𝑦 have to retire. Load retirement would remove the pin, which would in turn allow
the write in the other core to succeed, and execution to proceed. However, no load can retire ( 2 ):
both ROBs have an older store that cannot leave the ROB because the write buffer is full.

Core 1

� Stores are denied by loads

stldy

store x;
store;
load y;

1:
2:
3:

ROB
Head

Core 2

st ldx

store y;
store;
load x;

1:
2:
3:

ROB
Head

� Loads are blocked by stores

stystx
Write 

Buffer
Write
Buffer

Figure 6.4: Deadlock due to insufficient write buffer entries.

To prevent this deadlock, before Pinned Loads declares a load pinned, it counts the number of
yet-to-complete stores older than the load (already in the write buffer or not). The load is not pinned
while such count is higher than the number of write buffer entries.
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1 0Directory Data
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3 Defer

4 Abort
2 Inv*

CPT
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CPT

(a) Failed Retry (b) Successful Retry

1 GetX*
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1 0Directory Data
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3 Ack
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2 Inv*

CPT
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1 GetX*
2 Data

6 Remove x

S → I

Core 2
0 Write

5 Clear

Figure 6.5: Mechanism to prevent store starvation. In the figure, x is the address of the line that
the store is trying to update.

Preventing Evictions of Pinned Lines. Processors that support TSO also conservatively avoid
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MCVs by squashing a yet-to-retire load when the L1 cache wants to evict the line read by the load.
In Pinned Loads, the hardware prevents pinned lines from being evicted from L1.
The process is similar to how Pinned Loads denies invalidations in Section 6.5.1. Specifically,

when the L1 wants to evict a line, the hardware checks whether the line is pinned. The record of
what lines are pinned can be kept in the LQ, as described in Section 6.5.1, or in the L1 tags, as
we will see in Section 6.6.1. If the line is found pinned, the eviction is denied. Then, the cache
controller updates the replacement algorithm state as if the line had been accessed (to minimize
future attempts to evict the line), and then selects a new victim from the same cache set.
The action of evicting a line from L1may be initiated by a request from the local core, whichmay

need to allocate space in any cache, or from another core, which may need to allocate space in the
shared cache. Moreover, it may occur with inclusive, non-inclusive or exclusive cache hierarchies,
and with different directory organizations.
Note that this mechanism is not unusual: conventional cache hierarchies sometimes need to deny

cache line evictions, as is the case when the victim cache line is in a transient state. More details
are given in Section 6.6.1.

Guaranteeing Space in Cache & Directory. A core cannot pin any number of cache lines. The
number of pinned lines that map to a set in a private cache or to a set in a shared directory/LLC
cannot be bigger than the associativity of these structures: all the pinned lines need to remain in
the caches or directory/LLC, respectively. Consequently, before Pinned Loads declares a load L
pinned, it has to ensure that the lines accessed by all the currently-pinned loads plus L can co-exist
in the private caches and in the shared directory/LLC.
One approach to ensure that L can be pinned is to issue it first and observe whether it attains the

cache and directory space needed; if so, it gets pinned. Another approach is to only issue and pin
L if Pinned Loads can first guarantee that there will be space.
For this second approach, let us assume an inclusive cache hierarchy with private L1 caches

and a shared L2 LLC with the directory. We discuss other cache hierarchy organizations in Sec-
tion 6.6.2. In this case, Pinned Loads needs to know the associativity of L1 (𝑊 𝐿1) and, because the
directory/LLC is shared by all the cores, the number of entries in each set of each directory/LLC
slice that are reserved for each core (𝑊 𝑑). In addition, Pinned Loads needs to know the mapping
of line addresses to sets in L1 and to slices and sets in the directory/LLC. Finally, Pinned Loads
needs to have a small hardware-managed table that records, for each pinned load L, the L1 set and
the directory/LLC slice and set where the line accessed by L maps. This table is called the Cache
Shadow Table (CST) and is discussed in Section 6.6.2.
In this second approach, when Pinned Loads wants to pin load L, it first determines the L1 set

and the directory/LLC set and slice where the line maps. Then, it accesses the CST and determines
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whether such sets and slice can hold one additional pinned line—i.e., whether with the addition of L,
no more than𝑊 𝐿1 and𝑊 𝑑 pinned lines map to the same set in L1 and directory/LLC, respectively.
If these conditions are all met, L is declared pinned; otherwise pinning needs to wait.

Preventing Store Starvation. Figure 6.3 showed that when a core pins a cache line, a write by
another core is denied, and the hardware in the writer core has to keep retrying. Unfortunately, it is
possible that the reader core (and other additional cores) keep reading and pinning the line. Since
the decision to pin a line is made locally in each core, the readers may never know that there is a
writer that is starving.
To avoid starvation, Pinned Loads uses the following idea: if a write request is denied, its retry

works in a slightly different way, which prevents the indefinite repeated pinning of the line by other
cores before the write succeeds. To support this idea, Pinned Loads adds a small hardware table in
each core called the Cannot-Pin Table (CPT). The CPT records the lines that the core cannot pin
at the moment.
Figure 6.5 illustrates how the algorithm works. After the first write by Core 2 in Figure 6.3

was denied, Core 2 now retries with a new variant of GETX called GETX* ( 1 in Figure 6.5(a)).
After the directory receives GETX*, it sends a special invalidation, INV*, to Core 1 and all the other
current sharers ( 2 ). Upon receiving INV*, Core 1 and all the other sharers add the address of the
line (𝑥) to their CPTs ( 3 ), meaning that they will not be able to pin the line again until the write
succeeds. The sharers then reply to Core 2: if a sharer has the line pinned (as in Core 1), the sharer
replies DEFER to Core 2 ( 3 ); otherwise it replies ACK to Core 2 and invalidates its copy of the line.
If Core 2 receives at least one DEFER, it knows the line is pinned; hence it sends an ABORT to the
directory ( 4 ), which does not change its state. To minimize hardware modifications, the directory
is not modified to record that a write is being denied.
From now on, none of the cores with 𝑥 in their CPTs can pin the line—although they can read

it. Other cores can still read the line and pin it. However, every single retry of the write will insert
𝑥 in the CPTs of the sharers. In the worst case, all cores but the writer end up with 𝑥 in their CPTs.
Eventually, all the reader cores will retire the pinned loads, and a retry by the writer will find

that all the responses are ACK and there is no DEFER (Figure 6.5(b)). Such ACKs come from all the
sharers recorded in the directory. The write has now succeeded. Hence, Core 2 sends the UNBLOCK
message to the directory ( 4 ). On reception of the UNBLOCK message, the directory sends an extra
CLEAR request to all the sharers ( 5 ) so they remove 𝑥 from the CPT ( 6 ), and then updates the
sharer information.
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6.5.2 Late and Early Pinning Approaches

We propose two variations of Pinned Loads that offer different tradeoffs between hardware re-
quirements and performance: Early and Late Pinning. In both designs, loads are pinned in program
order, all loads that will eventually retire are pinned, and a load can only be pinned when it has met
all the conditions to reach its VP except for guaranteeing no MCV.

Late Pinning (LP).This design does not include the CST of Section 6.5.1. A core does not know, at
the point of issuing a load, whether the private caches and the shared directory/LLCwill have space
to hold the line—given all the older pinned loads. Hence, when a load meets all the conditions to
reach the VP except for guaranteeing no MCVs, and Pinned Loads concludes that there are enough
write buffer entries, Pinned Loads issues the load. If the core receives a response with the data,
it means that private caches and shared directory/LLC have the space for the line; then, Pinned
Loads declares the load pinned. Otherwise, Pinned Loads has to wait until the line can be loaded
to declare the load pinned.
This design has two advantages. First, it is simpler because it has no CST. Second, cores can

ignore the limitation of only pinning at most𝑊 𝑑 lines per set and slice in the shared directory/LLC.
A core can issue many loads that attempt to allocate lines in the directory/LLC; if they succeed,
the loads are declared pinned. It is possible that a core ends up pinning more than its share of lines
in a given directory/LLC set. Such a situation often improves performance and only infrequently
ends up temporarily starving other cores.
This design’s shortcoming is that the load’s response from the memory system is in the critical

path of declaring the load pinned and, hence, of “passing the VP to the next load”. The result is that
all loads access the memory system sequentially (Figures 6.2(c)-(e)), even if they are independent.
Hence, performance is low in programs with bunched-up cache misses.

Early Pinning (EP). This design includes the CST. When a load L meets all the conditions to
reach the VP except for guaranteeing no MCVs, and Pinned Loads ascertains that there are enough
write buffer entries, the CST is checked. If the CST decides that the new line will find space
in the private caches and the shared directory/LLC, L is declared pinned and the VP is “passed
down”—potentially even before issuing L to memory.
The pluses and minuses of this design are the opposite of those of the previous one. The advan-

tages are that independent loads are issued to memory with great parallelism (Figure 6.2(f)), even
out of order, and that the VP “is passed to younger loads” faster. The result is high application
performance. Recall, however, that if a load cannot be issued to memory due to a dependence,
then subsequent, independent loads cannot be issued to memory either (Figure 6.2(h)).
The shortcomings of this design are the need for the CST hardware and the fact that a core will

not attempt to pin more than its 𝑊 𝑑 share of lines per slice and set in the directory/LLC. This is
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because loads are pinned before being issued, and hence Pinned Loads has to guarantee space for
their data in advance.
Note that the assignment of𝑊 𝑑 maximum pinned lines per slice and set in the shared directo-

ry/LLC to each core is an agreement among cores; it does not require fixed set partitioning of the
directory/LLC. Also, once the load that pinned a line retires, the line gets unpinned, and the line can
remain in the directory/LLC for potential future use without counting toward the 𝑊 𝑑 maximum
pinned lines allocated to the owner core.

6.6 KEY IMPLEMENTATION ASPECTS

In this section, we describe the implementation of key aspects of the Pinned Loads hardware.

6.6.1 Recording Pinned Lines

Pinned Loads provides hardware to record the currently-pinned lines. On any attempt to inval-
idate or evict a line, the hardware is checked to either allow or prevent the operation. Note that
such hardware can be placed very close to the core. The reason is that, if a pinned load has already
obtained its data, it has brought the line to L1, and any invalidation or eviction request for the line
will reach L1. Alternatively, if the pinned load has not brought the line to L1 yet (which may hap-
pen in Early Pinning), since the load has not consumed the data yet, the consistency model does
not squash the load on invalidation or eviction of the line from other cache levels. We present two
possible designs to record pinned lines. Our chosen design is the first one.

Storing the Information in LQ. This design adds one Pinned bit to each LQ entry, indicating
whether the load is pinned. When a load gets pinned, the core sets the bit in the load’s LQ entry.
When the L1 receives an invalidation or attempts to evict a line, the LQ is checked. If the hardware
finds a matching entry with the Pinned bit set, the operation is denied. When a pinned load retires,
it trivially becomes unpinned.
Most of the mechanisms in this design are already present in conventional processors. For ex-

ample, in conventional processors, when a line is to be evicted from a cache level, the hardware
informs higher levels of caches (i.e., smaller caches) so they also evict the line—with some varia-
tions depending on whether or not the cache hierarchy is inclusive. In some proposals, the higher
levels may refuse to evict the line for performance or security reasons, prompting the initiating
cache level to find another victim [257, 258]. Pinned Loads uses the same approach for pinned
loads.
In conventional TSO cores, when the L1 wants to invalidate or evict a line, the hardware checks
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the LQ and, on a match, the corresponding load and its subsequent instructions are squashed. In
Pinned Loads, the process is different in twoways. First, the invalidation or evictionmay be denied.
Second, the LQ check and the invalidation/eviction cannot happen in parallel: the check has to be
done first in case the operation is denied.

Storing the Information in L1 Tags. This design adds a Pinned bit to each cache line in L1, to
indicate whether or not the line is pinned. At runtime, when a load is to get pinned, Pinned Loads
accesses the L1 and sets the Pinned bit of the line. When an L1 line receives an invalidation or is
picked for eviction, if its Pinned bit is set, the operation is denied.
This design still keeps the Pinned bit in the LQ entries. Recall that a load can become pinned

only after all of its older loads are pinned; hence the presence of the Pinned bit in the LQ enables the
hardware to find this condition easily. In addition, LQ entries need one additional bit: the Youngest
Pinned Load (YPL) bit. To understand its functionality, consider multiple pinned loads in the LQ
that are accessing the same line. Only when the youngest of them retires can Pinned Loads clear
the Pinned bit in the cache. Hence, for each pinned cache line, one of the LQ entries has the YPL
bit set. When a new load is to be pinned, the hardware searches the LQ for an entry for the same
line and the YPL bit set; if the entry is found, the hardware “passes the YPL bit” from the older to
the newer entry and there is no need to set the Pinned bit in L1 cache again. When a pinned load
with a set YPL bit retires, the L1 cache is accessed to clear the Pinned bit.
When using the Early Pinning of Section 6.5.2, a load may be declared pinned before the L1

receives the data. In this case, since the L1 does not have the line, we add a Pinned bit in the
MSHR that the load uses. This is done as soon as a pinned load is issued. When the requested line
is received and placed in the L1, the Pinned bit in the MSHR is copied to the L1.
The advantage of this design is that it decides whether to invalidate or evict an L1 line quickly,

without waiting for an LQ access. This reduces the latency to respond to requests. However,
a disadvantage is that this design requires extra requests from the pipeline to L1 to unpin lines.
This fact puts extra pressure on L1 and increases the unpinning latency. Overall, because load
pinning/unpinning operations are much more frequent than L1 invalidations or evictions, we do
not use this design.

6.6.2 Optional Cache Shadow Table (CST)

The CST is a per-core hardware structure only used in Early Pinning. It records the mapping of
each line pinned by the core—i.e., which set in L1 and which slice and set in the shared directo-
ry/LLC (Section 6.5.1). The hardware checks the CST before pinning a load to determine whether,
with the addition of this load, all the pinned lines still have enough guaranteed space in the cache
hierarchy.
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A core has one CST for the directory/LLC and one for the L1 cache. Each CST is a hash table.
Figure 6.6 shows the CST for the directory/LLC. Assume that Pinned Loads wants to pin a load
L that accesses address A. First, Pinned Loads generates the set and slice numbers where A maps,
hashes them, and uses the result to access a CST entry. An entry contains 𝑀 records, each corre-
sponding to a line. Each record has the hash of the line address, the LQ ID of the youngest pinned
load that reads from the line, and a Valid bit. 𝑀 is equal to or less than the maximum number of
lines that can be pinned by the core in the same set and slice (i.e.,𝑊 𝑑 in Section 6.5.1).

Hash(Address)
LQ ID Valid

N Entries

M Records

Hash

(Set, Slice)

Figure 6.6: Cache Shadow Table (CST) for the directory/LLC.

At the indexed table entry, the hardware performs a CAM read to find if there is a valid entry
for A. If there is, the line is already pinned by older loads, and hence the directory/LLC has enough
resources to pin 𝐿. Then, the LQ ID field of the record is updated to 𝐿’s LQ ID, and 𝐿 is declared
pinned.
If the CST entry does not contain a record for A, the hardware checks whether the entry has

enough room for a new record. If so, a new record for A is created, its LQ ID field is updated
to 𝐿’s LQ ID, and 𝐿 is declared pinned. Otherwise, the pinning is denied as there are not enough
resources.
To reduce overhead, when a pinned load retires, we do not access the CST to potentially remove

its entry. Instead, we let the potentially stale entry remain and remove it only when the hardware
attempts to pin a new line. At that point, the hardware discovers if any of the records in the chosen
entry has an LQ ID that is outside of the currently-used LQ entries. If so, the record is expunged.
One corner case that we handle is LQ ID wraparound, which could lead to using stale CST

entries. We solve this problem by using a longer LQ ID tag in both the CST and LQ. For example,
if the LQ has 64 entries, rather than using 6 bits for the LQ ID, we use 24 bits. Then, we use the
modulo operation to map an LQ ID to a physical LQ entry. With this longer LQ ID tag, wraparound
happens infrequently. When it happens, Pinned Loads stops pinning loads until all the pinned loads
retire. During this time, loads reach their VPs and issue as they would on a safe scheme without
Pinned Loads. Once all the pinned loads retire, the CST is cleared, and normal Pinned Loads
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execution resumes. Because wraparound is infrequent, the performance impact of this design is
negligible. Other designs to handle LQ ID wraparound are possible.
The use of hashes in the CST may cause hash collisions. One class of collisions occurs when

two different {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒} pairs hash to the same CST entry. This is safe, as it only underestimates the
capacity of a {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒} combination. Another class of collisions occurs when the hashes of two
different line addresses in a {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒} match the same record. This collision needs to be detected.
Pinned Loads detects it by always using the second field of the record (i.e., the LQ ID) to access
the LQ entry and check whether the line address of the existing entry is indeed the same as the one
we want to pin. If it is not, then we cannot pin the new load and Pinned Loads handles it as if there
was not enough space in the {𝑠𝑒𝑡, 𝑠𝑙𝑖𝑐𝑒}.
The CST for the L1 cache operates similarly, except that there is no slice number, and that the

number of records per entry𝑀 can be as high as the cache associativity.

Supporting Different Types of Cache Hierarchies Cache hierarchies can have different orga-
nizations, which may affect how Pinned Loads designs its CSTs. In particular, cache hierarchies
typically have multiple levels of private caches (e.g., an L1 and an L2 level). In nearly all cases,
there is no need to have a CST for a private L2 cache. This is true if the L2 is exclusive with respect
to the L1: whether the L1 has enough space to hold a line does not depend on L2’s organization.
It is also almost always true if the L2 is inclusive with respect to the L1: L1 caches typically have
a set count and an associativity that are lower than or equal to those of the L2 caches. Hence, it is
almost always the case that, if a line has space in L1, it also has space in L2. If such statement is
untrue, Pinned Loads would need a CST for a private L2. Finally, if the L2 is non-inclusive with
respect to the L1, a more subtle analysis of the data flows allowed is required to determine the CST
needs.

6.6.3 Cannot-Pin Table (CPT)

The CPT is a per-core hardware structure that records the addresses of lines that the core is not
allowed to pin at the moment (Section 6.5.1). The CPT is placed near the LQ, which checks it
before attempting to pin a line. A line’s address is inserted in the CPT when the core receives
an INV*; the address is removed when the core receives a CLEAR. Our CPT can hold up to four
addresses although, on average (Section 6.9.2), it only needs to hold one. If the CPT fills up and a
request to insert an address cannot be serviced, the core stops pinning loads until the CPT is half
empty.
We expect that a core that tries to write to a pinned line like Core 2 in Figure 6.5(a) will eventually

succeed in inserting an entry in the CPT(s) of the reader core(s). However, there is a corner case

130



when every time that Core 2 attempts to write, the CPT(s) in the reader core(s) are full and do not
accept new entries. In this very unlikely case, Core 2 would never succeed in inserting its entry in
the CPT(s).
To prevent this case, a more advanced design can add a small FIFO queue to the CPT with the

IDs of writer cores that visited the node but found no space in the CPT. Then, when one CPT entry
is released, it is reserved for a write from the core whose ID is at the head of the queue.

6.6.4 Effect of Limited-Sized Hardware Structures

Pinned Loads uses certain key hardware structures such as the CST, CPT, and extended LQ ID
tag. Their limited size may sometimes cause Pinned Loads to operate with slightly lower perfor-
mance, but never incorrectly. Specifically, when the CST cannot find space to pin a load, either
because there is no space or because of a hash conflict, the core stops pinning loads until space
can be found. Similarly, when the CPT fills up, the core stops pinning loads until the CPT is half
empty. Finally, when LQ ID tag wraps around, the core stops pinning loads until all the pinned
loads retire. In all cases, in the meantime, loads reach their VPs and issue as they would on a
safe scheme without Pinned Loads. The execution is not as fast but it is correct and does not have
deadlocks or livelocks.

6.7 COMPARISON TO A RELATED SCHEME

Our design to guarantee early that a load will not cause MCVs uses a mechanism to temporarily
delay invalidations to a line. Ros et al. [259] proposed a mechanism with a similar goal in their
WritersBlock protocol. Their purpose was to improve performance by allowing load-load reorder-
ing in TSO without squashes. Later, Tran et al. [248] applied the design to a speculative processor
to allow loads to execute early without risking MCVs—the same goal as Pinned Loads.
We did not want to use Tran et al.’s aggressive design because its hardware is complex. In this

section, we compare Pinned Loads to their design.
In the WritersBlock protocol, any load that has been issued speculatively causes its core to (i)

reject an incoming write to the line and (ii) send a request to the directory, causing the directory
to enter a new transient state for the line called WritersBlock. The rejected write is buffered and
blocked in the directory. Other readers that arrive to the directory while in WritersBlock state can
read the data. However, to prevent starvation, they get a ”tear-off” copy of the data: a copy that
is uncacheable, does not get recorded in the directory, and can be used only once. Moreover, a
directory entry in WritersBlock state cannot be evicted from the directory. Hence, if a read for a
different line arrives to the directory/LLC and cannot allocate space because it would have to evict
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WritersBlock-ed entries, the read gets a tear-off copy of the data from main memory and does not
allocate a directory entry.
This is an aggressive design that allows any speculative load in any order to get the data—

irrespective of how many older loads exist in the ROB, and without needing to guarantee that
there is space to hold the line in caches or directory. However, the hardware changes required
are major: a new transient directory state, which buffers the write and allows reads; writes that
transition between three- and four-hop transactions; reads that dynamically turn uncacheable based
on directory state; and new read transactions that directly grab data frommemory and skip directory
entry allocation. The result is challenging hardware. Perhaps more importantly, adding these no-
directory-allocation and uncached paths creates parallel paths for transactions, namely cached and
uncached paths, which are hard to verify for correctness.
In contrast, with Pinned Loads, we seek a simpler and safe design. A key source of complex-

ity reduction is that Pinned Loads pins all the loads of a core in strict program order, and only
when cache and directory resources are guaranteed. Further, we limit the complexity added to the
coherence protocol as much as we can: we add no new directory states; we create no uncached
or no-directory-allocation paths in the protocol; the directory buffers no new state; to attempt to
write to pinned lines, we reuse processor retry mechanisms that have been used commercially to
access busy directory lines; and, generally, we minimize the changes made to the directory and
LLC, moving some functionality to structures that are local to cores.

6.8 EXPERIMENTAL METHODOLOGY

We model the architecture shown in Table 6.1 using cycle-level simulations with gem5 [230].
In the simulator, we model all the side effects of transient instructions. The baseline architecture is
called UNSAFE, because it has no protection against speculative execution attacks. We use loads as
transmitters and model the Comprehensive [246] and Spectre [18] threat models. In Comprehen-
sive, squashes can be due to control-flow mispredictions, address aliasing, exceptions, and MCVs.
In Spectre, the only relevant squashes are those due to control-flow mispredictions.
We augment the UNSAFE architecture with the hardware defense schemes in Table 6.2. These

schemes protect loads until they reach their VP as follows: FENCE stalls loads with fences; Delay-
On-Miss (DOM) [120, 121] stalls speculative loads that miss in the L1; STT [116] stalls loads
whose arguments are tainted by transiently-read data.
We model each hardware defense scheme with the configurations of Table 6.3. They include

COMP and SPECTRE, which are the defense schemes without extensions under the Comprehensive
and Spectre model, respectively. They also include LP and EP, which are the defense schemes
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augmented with Late Pinning and Early Pinning, respectively, under the Comprehensive model.
Table 6.1 shows the area, dynamic read energy, and leakage power of the CST, which is the main

Pinned Loads hardware structure. The data are obtained using Cacti [260] with 22nm technology.

Table 6.1: Parameters of the simulated architecture.

Parameter Value
Architecture 1 (SPEC17) or 8 (SPLASH2 & PARSEC) out-of-

order x86 cores at 2.0GHz
Core 8-issue, no SMT, 62 load queue entries, 32 store

queue entries, 192 ROB entries, LTAGE branch pre-
dictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 2 cycle Round Trip (RT)
latency, 1 port, 1 hardware prefetcher

Private L1-D Cache 32KB, 64B line, 8-way, 2 cycle RT latency, 3 Rd/Wr
ports, 1 hardware prefetcher

Shared L2 Cache (LLC) Slice: 2MB, 64B line, 16-way, 8 cycles RT latency
Coherence Directory-based MESI protocol
Network Ordered, 4×2 mesh, 128b link, 1 cycle/hop
DRAM 50 ns RT latency after L2
L1 CST 12 entries, 8 records/entry; Area: 0.0008𝑚𝑚2; Dy-

namic read energy: 0.6𝑝𝐽; Leakage power: 0.17𝑚𝑊
Dir/LLC CST 40 entries, 2 records/entry; 𝑊 𝑑: 2 per slice and set

for each core; Area: 0.0005𝑚𝑚2; Dynamic read en-
ergy: 0.4𝑝𝐽; Leakage power: 0.17𝑚𝑊

CPT 4 entries; Negligible area, energy, and power
LQ ID Tag 24 bits

Table 6.2: Hardware defense schemes modeled.

Scheme Description of the defense
UNSAFE No defense: unmodified x86 architecture
FENCE Stall all speculative loads with fences
DOM Stall speculative loads on L1 miss [120, 121]
STT Stall loads that are tainted by transient data [116]

We run SPEC17 applications [231] on a single core, and SPLASH2 [253] and PARSEC [254]
applications on 8 cores. For SPEC17, we use the reference input size. For each application, we use
SimPoint [232] to generate up to 10 representative intervals that accurately characterize the end-
to-end performance of the application. Each interval consists of 50M instructions. We run Gem5
on each interval with system-call emulation mode with 1M warm-up instructions. For SPLASH2
and PARSEC, we use the simmedium input size and run full-system simulation for the region of
interest (ROI).
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Table 6.3: Extensions added to the defense schemes.

Config. Description
COMP No extension: Unmodified scheme under Comprehensive model
LP COMP + Pinned Loads with Late Pinning
EP COMP + Pinned Loads with Early Pinning
SPECTRE No extension: Unmodified scheme under Spectre model
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Figure 6.7: Normalized CPI of SPEC17 programs on different architecture configurations, all nor-
malized to UNSAFE. The three plots correspond, from top to bottom, to configurations built on the
FENCE, DOM, and STT defense schemes. Each plot has a different Y-axis range.
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Figure 6.8: Normalized CPI of SPLASH2 and PARSEC programs on different architecture config-
urations, all normalized to UNSAFE. The three plots correspond, from top to bottom, to configura-
tions built on the FENCE, DOM, and STT defense schemes. Each plot has a different Y-axis range.
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6.9 EVALUATION

6.9.1 Overall Performance Results

Performance on SPEC17. Figure 6.7 shows the normalized CPI of SPEC17 programs on all the
defense schemes with the extensions listed in Table 6.3 (COMP, LP, EP, and SPECTRE). The three
plots correspond, from top to bottom, to the FENCE, DOM, and STT defense schemes. Each plot
has a different Y-axis range. All bars are normalized to UNSAFE. Each plot shows each SPEC17
program and the geometric mean of all.
Going from top to bottom, we see that FENCE has the highest execution overhead among all the

schemes evaluated. On average, it has a geometric mean execution overhead of 112.6% with the
Comprehensive model. With Late Pinning (LP), we reduce the execution overhead to 66.4%. By
using Early Pinning (EP), we further reduce the execution overhead to 51.3%, which is close to the
execution overhead with the Spectre threat model (34.5%).
DOM has a moderate execution overhead on SPEC17. On average, it has a geometric mean

execution overhead of 35.8% under Comprehensive. Because DOM only delays speculative loads
that miss in L1, it usually has high execution overhead on applications that have poor L1 hit rate,
in which case LP cannot effectively pin the loads and “pass the VP” (Section 6.5.2). With LP, the
average execution overhead is only reduced to 32.3%. EP, on the other hand, can better handle
cache misses (Section 6.5.2), and reduces the average execution overhead to 15.3%. This is close
to Spectre’s (9.7%). EP provides huge speedups to benchmarks with high L1 miss rates, such as
bwaves and fotonik3d.
STT’s average execution overhead is 24.8% on SPEC17 under Comprehensive. It is the fastest

scheme evaluated. LP reduces the average execution overhead to 19.5% and EP to 13.2%. The
execution overhead under the Spectre model is 6.4%.
Overall, we see that augmenting existing defense schemes with EP substantially reduces the

execution overhead of the schemes.

Performance on SPLASH2 and PARSEC. Figure 6.8 shows the normalized CPI of SPLASH2
and PARSEC applications. The figure is organized as in Figure 6.7. We see that FENCE’s geometric
mean execution overhead is 113.1% under Comprehensive. Because of the relatively high L1 hit
rate of SPLASH2 and PARSEC applications, both LP and EP offer good speedups: they reduce
the execution overhead to 51.2% and 46.4%, respectively. The execution overhead under Spectre
is 31.1%.
DOM has a moderate execution overhead on SPLASH2 and PARSEC under Comprehensive,

mainly because of high L1 hit rate. On average, its execution overhead is 15.8%. LP reduces it
to 12.7%, and EP further reduces it to 7.6%. The execution overhead under Spectre is 4.2%. The
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lu_ncb and raytrace applications have a high L1 miss rate, but lu_ncb’s branches are resolved
quickly (hence SPECTRE performs well), unlike raytrace’s. EP reduces lu_ncb’s execution over-
head from 167.2% to 33.3%.
STT has small execution overheads on SPLASH2 and PARSEC. On average, it has a geometric

mean execution overhead of 11.3% under Comprehensive. With LP, it is reduced to 8.7%. EP
further reduces it to 8.1%. The execution overhead under Spectre is 5.1%. The x264 application
still has much higher execution overhead under EP than under SPECTRE. The reason is that it has
dependencies between loads, which is a pattern EP cannot efficiently handle.
Overall, for these programs, we observe that LP, and especially EP, substantially reduce the

execution overheads of all schemes.

Network Traffic Overhead. While Pinned Loads does not change the network traffic of the
SPEC17 applications, it could increase the traffic of the SPLASH2 and PARSEC applications. In
practice, we find that enabling Pinned Loads on FENCE, DOM, and STT has no significant impact
on network traffic. The reason is that very few writes and evictions have to retry due to pinning.
Even in the worst-case applications, only 14.8 writes and 0.05 evictions are retried per million
instructions.

Breakdown of the Execution Overhead. We now assess the big-picture impact of Pinned Loads
on the execution overhead of the defense schemes. Figure 6.9 combines defense schemes (FENCE,
DOM, and STT) and applications (SPEC17 and Parallel ones). For each combination, it shows,
first, the execution overhead of COMP normalized to UNSAFE and broken down into the different
sources of speculation. These bars are like those in Figure 6.1. The second and third bars of each
combination are the execution overheads of the same defense scheme augmented with LP and EP,
respectively. Note that two of the bars in the graph are cut off.
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Figure 6.9: Breakdown of the execution overhead due to different sources and for different
schemes, all relative to UNSAFE.

We see that, under the Comprehensive model, the execution overhead of every defense scheme
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is mainly caused by stalls to prevent potential MCVs and, to a lesser extent, control dependencies.
LP and EP focus on removing the MCV overhead. We see that LP and, especially, EP eliminate
most of the MCV overhead. The upper bound of EP’s effectiveness is to eliminate all the MCV
overhead. In that case, it would be nearly as if we only had control dependence overheads—which
is the Spectre model overhead. From the figure, we see that, in the case of FENCE, EP has an
absolute 15% higher overhead than Spectre.

6.9.2 Analysis of the Hardware Structures

Cache Shadow Table (CST) Configuration. Ideally, the CST should precisely track where each
pinned line maps in the L1 cache and in the directory/LLC. However, in practice, to minimize area
overhead, we reduce the CST’s number of entries and number of records per entry. As a result,
there are false positive conflicts: the CST claims the load cannot be pinned due to lack of space
while, in reality, there is space.
To decide on the sizes of the CSTs, we perform a sensitivity analysis. Our chosen default sizes

(Table 6.1) are 12 entries with 8 records per entry for the L1 CST and 40 entries with 2 records per
entry for the Dir/LLC CST. With this design, we find that the average L1 CST false positive rates
are smaller than 0.02% on SPEC17, and than 0.01% on SPLASH2 and PARSEC for all the defense
schemes with EP. Further, the average Dir/LLC CST false positive rates are smaller than 0.4% on
SPEC17, and than 0.02% on SPLASH2 and PARSEC for all the schemes with EP. Hence, false
positives are rare.
We measured the execution overhead of the different defense schemes (with EP) and programs

for different CST sizes. On average, the execution overhead with our chosen configuration is
3.6% higher than with an infinite CST.

Cannot-Pin Table (CPT) Size. A line is inserted into the CPT only when a write fails a retry after
having been deferred. We collect the average and the maximum number of lines that are in the
CPT at a time. We use an ideal CPT and run SPLASH2 and PARSEC. On average, the CPT only
needs to hold one line, and the maximum number of lines is 4–7 for all the schemes. Thus, we use
a default CPT with 4 entries (Table 6.1). With this size, we see less than 0.0001 CPT overflows
per insertion attempt for a few applications, and no overflows for most.

Smaller Directory/LLC Partition Size. Our default EP design allows a core to pin up to 2 lines
per set in the directory/LLC at a time (𝑊 𝑑 is 2). We repeat our experiments with 𝑊 𝑑 equal to
1 while keeping the same CST size. We see that the overhead of the schemes with EP increases:
for FENCE, it increases from 51.3% to 54.7% on SPEC17 and from 46.4% to 47.0% on parallel
applications; for DOM, it changes from 15.3% to 18.5% on SPEC17 and from 7.6% to 8.0% on
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parallel applications; for STT, it increases from 13.2% to 14.7% on SPEC17 and remains the same
on parallel applications. Consequently, keeping𝑊 𝑑 equal to 2 is best.

Hardware Overhead. The main storage structure added by Pinned Loads is the CST used by
EP. The CPT and the extended LQ ID tags are very small. With our default configuration and
including the tags, the L1 CST is 444 bytes and the Directory/LLC CST is 370 bytes. We use
CACTI 7.0 [260] to estimate the CST area, dynamic read energy, and leakage power at 22nm. As
shown in Table 6.1, these numbers are very small.

6.10 OTHER RELATED WORK

Speculative execution attacks exfiltrate secret data by exploiting different types of speculation,
such as control-flow speculation [18, 22, 27, 28, 261, 262, 263], memory dependence specula-
tion [264], and memory consistency speculation [20, 249]. For memory consistency speculation,
Ragab et al. [20] and Skarlatos et al. [249] demonstrate how an attacker from a core can repeatedly
create squashes due to MCVs in another core. From here, many attacks are possible. For exam-
ple, if the victim gets a random number, the attacker can force selective squashes and retries and
bias the random number generator. Defending against this type of speculation attack is expensive.
Pinned Loads substantially reduces the cost of such defense.

6.11 CONCLUSION

To reduce the overhead of defenses against speculative execution attacks, this chapter presented
Pinned Loads, a general technique that helps instructions reach their VPs sooner. Under the Com-
prehensive threat model, we found that the progress of the VP is mostly impeded by waiting until
no MCVs are possible. Hence, Pinned Loads tries to make loads invulnerable to MCVs as early
as possible—a process we call pinning the loads in the ROB. In this chapter, we described the
several hardware mechanisms needed by Pinned Loads, and two possible Pinned Loads designs
with different tradeoffs. Our evaluation showed that Pinned Loads is very effective: extending
the fence-insertion, Delay-On-Miss, and STT defense schemes with Pinned Loads reduces these
schemes’ average execution overhead on SPEC17 and on SPLASH2/PARSEC applications by
about 50%. Specifically, on SPEC17, the execution overhead of the three defense schemes de-
creases from 112.6% to 51.3%, from 35.8% to 15.3%, and from 24.8% to 13.2%, respectively;
on SPLASH2/PARSEC, the execution overhead decreases from 113.1% to 46.4%, from 15.8% to
7.6%, and from 11.3% to 8.1%, respectively.
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CHAPTER 7: Faster Safe Execution Through Program Analysis

7.1 INTRODUCTION

In Chapter 6, we discussed a hardware-only mechanism that helps speculative instructions reach
their VP early and thus reducing the performance overhead of various defenses to speculative side-
channel attacks. In this chapter, we propose a software-hardware co-design scheme named Invar-
Spec that safely executes speculative instructions even before they reach their VP. InvarSpec is
based on the observation that a speculative instruction can become Speculation Invariant at some
point before turning non-speculative. By this, wemean that speculative instruction i reaches a point
when (i) whether i will execute or not does not depend on speculative state, and (ii) the operands
of i do not depend on speculative state. When a speculative instruction is speculation invariant and
its operands are ready, we say it reaches its Execution-Safe Point (ESP).
Figure 7.1 shows two simple examples of speculation invariant loads. Consider the Compre-

hensive threat model [118], where all instructions remain speculative—and therefore squashable
—until they reach the Reorder Buffer (ROB) head. Figure 7.1(a) shows a speculative load follow-
ing an unresolved branch where the load address x is not dependent on any of the two branch paths.
We say that ld x is speculation invariant and, as soon as x is ready, speculative ld x reaches its ESP.
No matter which direction the branch finally takes, ld x will always execute and access the same
address. Figure 7.1(b) shows the same speculative load following an earlier load whose return data
y does not directly or indirectly affect the register that ld x uses to generate the x address. Once
again, ld x is speculation invariant and, as soon as x is ready, ld x reaches its ESP.

ld x

y = ld 

ld x

(b)(a)

Then
Path

Branch

Else
Path

Figure 7.1: Examples of speculation invariance.

When a speculative instruction reaches its ESP, we propose to lift any protection and execute
the instruction. In the previous examples, we propose to send the load request to memory without
protection. With this strategy, the performance of any of the previous protection schemes will
improve. At the same time, the protection schemes’ security properties will not change: executing
a speculation invariant instruction without protection will not reveal any more secrets than the
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underlying hardware protection scheme would reveal with the non-speculative execution of the
instruction.
Unfortunately, hardware structures alone cannot exploit these insights because the hardware is

only aware of the current speculative path being executed and does not reason about all possible
paths. Instead, we need a program analysis infrastructure to analyze the program and inform the
hardware of the speculation invariance of instructions.
We introduce a framework to exploit speculation invariance for higher performance without

hurting security. InvarSpec includes a program analysis pass that identifies, for each instruction i
under protection, the set of older instructions (e.g., the branch and the load 𝑦 = 𝑙𝑑 in Figure 7.1) that
are Safe for i—i.e., those instructions that do not prevent i from becoming speculation invariant.
At runtime, the InvarSpec micro-architecture loads this information and uses it to identify when
speculative instructions can execute early, without protection.
InvarSpec is one of the first defense schemes against speculative execution attacks that com-

bines cooperative compiler and hardware mechanisms. It consists of an analysis pass for binaries,
currently implemented for x86 binaries, and pipeline micro-architecture that uses this information
at runtime.
To evaluate InvarSpec, we apply its analysis pass on the SPEC17 and SPEC06 programs and

model its micro-architecture in a cycle-level simulator. Our results show that InvarSpec is ef-
fective. On average, using InvarSpec reduces the execution overhead of fence-based protection
from 195.3% to 108.2%, the execution overhead of DOM from 39.5% to 24.4%, and the execution
overhead of InvisiSpec from 15.4% to 10.9%.
In summary, the chapter makes the following contributions:

• Presents Speculation Invariance to improve the performance of hardware security schemes
against speculative execution attacks without hurting their security properties.

• Develops and evaluates the InvarSpec analysis pass.

• Develops the InvarSpec micro-architecture and uses it, together with the analysis pass, to
improve the performance of three existing hardware security schemes.

7.2 SPECULATION INVARIANCE

7.2.1 Main Idea

As pointed out above, several defense schemes (at least [118, 119, 120, 121, 122]) use hard-
ware mechanisms to block leakage while a transmitter is potentially transient and thus unsafe. If
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one could disable such mechanisms before the transmitter reaches its VP and, therefore, execute
the transmitter speculatively without protection, one would reduce the overhead of these defense
schemes.
In this chapter, we propose a combined compiler and hardware scheme called InvarSpec that

allows the lifting of these protection mechanisms for speculative instructions. The key idea is to
identify Speculation Invariant instructions and allow them to execute while speculative without
protection.

A speculative instruction i becomes Speculation Invariant when (i) whether i will execute is not
a function of speculative state, and (ii) the operands of i are not a function of speculative state.
When an instruction is speculation invariant and its operands are ready, we say that the instruction
reaches its Execution-Safe Point (ESP).

Intuitively, ESP is the earliest point when speculative instruction i can execute and is guaranteed
to eventually commit using the exact same operands—no matter how many times it is squashed
by older instructions due to incorrect speculation. At an instruction’s ESP, InvarSpec permits its
speculative execution without protection.
Since the definition of speculative instruction depends on the threat model (e.g., Spectre or Com-

prehensive as defined in Section 2.3.3), speculation invariance and ESP for an instruction depend
on the threat model. For example, assume that the branch in Figure 7.1(a) is unresolved and that
there is no unresolved branch between the two loads in Figure 7.1(b). In Figure 7.1(a), ld x is spec-
ulation invariant under both Spectre and Comprehensive; in Figure 7.1(b), ld x is only speculative
(and speculation invariant) under Comprehensive.
Figure 7.2(a) shows four points in the lifetime of a load instruction—which we use as a represen-

tative transmitter. Time increases to the right. The Ready point is when the load operands become
available and the load is ready to be sent to memory speculatively. Current defense schemes place
restrictions on what the load can do at this point. Sometime later, the load becomes speculation
invariant and reaches its ESP. At this point, with InvarSpec, the load can be sent to memory with-
out protection. Later, the load reaches its VP, where it becomes non-speculative and can be safely
sent to memory without protection. Finally, the load retires. Effectively, InvarSpec moves the
safe point of sending the load to memory from VP to ESP, reducing the overhead of the defense
mechanism.
According to the threat model that we use (Section 7.3), it is safe to expose the side effects of a

speculation invariant instruction. Its execution does not reveal anymore secrets than the underlying
hardware defense scheme would reveal with the non-speculative execution of the instruction.
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Execution Visibility

Load becomes non−speculative

Load retires
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(a)

Safe Point Point

Possible squashes

Time

Timeline of a load instruction

based on the threat model

under InvarSpec
Load can be sent to memory

Load is ready to be sent to memory
(speculatively)

Reg = ld x

ld  0(Reg)

of x
Inval

(b)

Squashing 
Instruction:

Figure 7.2: Supporting speculation invariance.

7.2.2 Definitions

The InvarSpec framework has two important types of instructions: Transmitters and Squash-
ing ones. Transmitters (e.g., loads) are inherited from the defense scheme that InvarSpec aug-
ments. Squashing instructions are those that can cause squashes that may lead to security viola-
tions. Squashing instructions are defined by the threat model. For the Spectre model, they are
branches; for the Comprehensive model, they are branches, loads, and any instructions capable of
causing exceptions. For example, a load may be squashed on reception of an invalidation for the
address that it loaded, due to the processor’s memory consistency mechanisms.
In this chapter, we use loads as the transmitters and apply the Comprehensive model. In addition,

we focus our analysis on the most challenging squashing instructions: branches (which can be
mispredicted) and loads (which may be involved in exceptions or consistency violations and, on
re-execution, can read a new value). Instructions other than loads may also be involved in squashes
due to exceptions, but they are much easier to handle. We discuss exceptions in Section 7.2.6.
Any instruction i that follows a squashing one and that has executed speculatively, may have to

be squashed. Only if i had reached its ESP when it executed, it is guaranteed that, even after the
squash, i will be re-executed and will use the same operands. For this reason, in InvarSpec, it is
key to identify when a transmitter reaches its ESP. Only then can the transmitter execute without
protection.
If InvarSpec only uses hardware support to identify when a transmitter reaches its ESP, it pro-

duces conservative results. The hardware uses the following algorithm.
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A transmit instruction i reaches its ESP when its operands are ready and each of its older squash-
ing instructions in the ROB has: (i) executed and (ii) produced its final result. As a shorthand
for conditions (i) and (ii), we will say that the older squashing instruction has reached its Out-
come Safe Point (OSP)—i.e., the point where its result will not change irrespective of any future
squashes.

When has an executed squashing instruction “produced its final result”? If we do not consider
loads, we can say that non-load squashing instructions have produced their final result when all
older branches have resolved. However, loads work differently. A load may reach its ESP (because
it is also a transmitter) and execute, then get squashed, and then, as it re-executes with the same
operand (i.e., the memory address), it may read a different value from memory—if another thread
has written to the same location in between. An example is shown in Figure 7.2(b), where ld x
reads a value into 𝑅𝑒𝑔, then gets squashed by an invalidation of 𝑥 and then, as it re-executes, reads
a different value from location 𝑥. Consequently, for a load to reach its OSP, it has to reach its ESP,
execute, and then reach a point where it cannot be squashed anymore—typically, the ROB head.
Therefore, for the TSO-based x86 architecture and squashing instructions that we consider, the

condition for an executed squashing instruction 𝑖 to reach its OSP is as follows. First, if 𝑖 is not a
load, 𝑖 reaches its OSP when (i) all the older branches in the ROB are resolved and (ii) there is at
most one older load in the ROB, which is at a point where it cannot be squashed anymore. Second,
if 𝑖 is a load, 𝑖 reaches its OSP when is at a point in the ROB where it cannot be squashed anymore.
As indicated before, under the Comprehensive threat model, loads cannot be squashed anymore
only when they are at the ROB head.

7.2.3 Using Program Analysis Information

A program analysis pass can help the hardware algorithm just described to be more aggressive.
It can identify, for each transmitter, the set of older squashing instructions that are Safe for the
transmitter.
Safe instructions for an instruction i are older squashing instructions that, even if they have not ex-
ecuted and generated their final result (i.e., they have not reached their OSP), they cannot prevent
i from becoming speculation invariant.

Intuitively, the transmitter can become speculation invariant despite the fact that these older
squashing instructions have not yet completed. Consequently, the hardware does not need to con-
sider them when determining whether the transmitter is speculation invariant.
What are safe branches and safe loads for the x86 architecture? For a given load i, safe branches

are those whose outcome cannot affect whether i will execute and what operands i will use. An ex-
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ample was shown in Figure 7.1(a). For a given load i, safe loads are those whose return data cannot
affect directly or indirectly the address that i loads from. An example was shown in Figure 7.1(b).
If, instead, load i is control dependent on a branch or data dependent on a load, then the branch or
load is not safe for i.
The InvarSpec framework includes an analysis pass that takes a source or executable program

and determines, for each transmitter, the set of safe squashing instructions. It then places these
instructions’ program counters (PCs) in a Safe Set (SS) for the transmitter.
At runtime, when a transmitter is about to execute and the InvarSpec hardware wants to de-

termine whether the transmitter has reached its ESP, the hardware computes the ESP condition
described in the box of Section 7.2.2. However, the hardware also reads the transmitter’s SS and
prunes from the computation all of the squashing instructions in the ROB that are in the SS of the
transmitter. Specifically, older branches and loads that are in the SS do not need to have reached
their OSP for the hardware to conclude that the transmitter has reached its ESP. As a result, the
transmitter reaches its ESP sooner and can execute sooner.
Finally, from this discussion, it is clear that we want the squashing instructions 𝑗 that are not in

the SS of the transmitter to reach their OSP as soon as possible. Sadly, each of them needs to fulfill
the conditions listed on Section 7.2.2, which require that even older squashing instructions execute
and reach their OSP. Fortunately, we can speed-up this process if we also generate the SS for each
squashing instruction 𝑗. Any instruction in 𝑗’s SS can be disregarded as we compute the conditions
for 𝑗 to reach its OSP. With this insight, we help 𝑗 reach its OSP sooner. Hence, InvarSpec also
builds the SS for squashing instructions.

7.2.4 The Complete InvarSpec Framework

The InvarSpec framework has two parts: (i) an analysis pass that generates the SS for transmit
and squashing instructions, and (ii) hardware that, at runtime, loads the SSs and computes the ESP
conditions. The analysis has two levels of support. The first one, called Baseline, populates the SS
of instruction i with only those squashing instructions that are safe for i no matter what execution
path the program takes.
The second level, called Enhanced, is more aggressive. It additionally places in the SS of i some

squashing instructions that are not safe for some execution paths—as long as the hardware can
detect when these paths are executed and prevent i from being executed until i is indeed speculation
invariant. With this support, when the other paths are followed, i can be executed earlier. Enhanced
improves the analysis by exploiting dynamic path execution behavior.
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7.2.5 Handling Store-to-Load Forwarding

When a load reaches its ESP and there is an older store, we need to ensure that whether the store
and the load alias is invisible to an attacker. Otherwise, the attacker could deduce the address of the
load. Specifically, if store and load alias and the load gets the data from the store, the attacker can
deduce the alias by not observing a load access to the cache hierarchy. To solve this problem, we
change the microarchitecture slightly as follows. The load is always issued to the cache hierarchy
and if, at this point or later, the store address is found to alias, the load gets the data from the store
and ignores the data returned from the cache hierarchy.
Relevant to InvarSpec is to understand when is the point where a load reaches its OSP. Such

point requires not only that the load not be squashable anymore. In also requires that all of its older
stores have been resolved—and hence that the load has been able to read the correct data, either
from memory or from a store. InvarSpec implements this algorithm.

7.2.6 Handling Exceptions

Branches and loads are challenging instructions because, when they cause or are involved in a
squash, they may change (i) what subsequent program instructions execute, and (ii) what operand
values such subsequent instructions take.
Consider now exceptions. We assume an environment with no self-modifying code and no

attacker-tampered executable. Here, there are two cases to consider. One is when the OS is able to
service the exception and resume the program execution. The second case is when the exception
causes program termination.
For the first case, InvarSpec’s analysis only considers exceptions that involve the re-execution

of loads, since loads may read a new value on re-execution. When only non-load instructions are
involved, the re-execution after the exception is the same as the execution before. Hence, non-loads
involved in exceptions do not need to be considered by InvarSpec.
The second case is when the exception causes program termination. In this case, we argue that no

harm occurs from executing any speculation invariant transmitters that appear after the excepting
instruction in program order. The reason is that such instructions are, by definition, control- and
data-flow independent of the excepting instruction. As a result, unless the programmer or compiler
explicitly places a fence in the code, the programmer can have no expectation about their execution
order with respect to the excepting instruction—e.g., a different compiler could have hoisted these
speculation invariant transmitters above the excepting instruction. Overall, program-termination
exceptions do not affect InvarSpec’s analysis either.
In summary, InvarSpec’s analysis only needs to be concerned with exceptions that involve the re-
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execution of loads and are non terminating. Hence, the analysis of squashing instructions is limited
to branches (which mispredict) and loads (which are involved in non-terminating exceptions and
consistency violations).

7.3 THREAT MODEL

InvarSpec inherits the transmitters and the threat model from the hardware defense scheme that
it augments. In this chapter, we augment defense schemes that use loads as the transmitters and
Comprehensive as the threat model (Section 2.3.3). As indicated above, in this threat model, the
analysis only needs to focus on two types of squashing instructions: branches (which can mis-
predict) and loads (which can re-load a new value after a non-terminating exception or a memory
consistency violation—i.e., when certain speculatively loaded data receives an invalidation or suf-
fers a cache eviction). The other type of instructions involved in exceptions are handled by existing
hardware and the OS. In our model, victim and attacker can run on different cores or on different
SMT contexts of a core.
InvarSpec allows speculative transmitters that are speculation invariant to execute speculatively

without protection. InvarSpec is secure because it does not change the security properties of the
defense scheme that it augments. Indeed, the execution of these speculative instructions does
not reveal any more information than the underlying defense scheme would reveal with the non-
speculative execution of the instructions.
We are expressly not considering attacks where the exact timing of when these speculative in-

structions execute would create a side channel. The defense schemes discussed [118, 119, 120,
121, 122] use the same assumption.
We assume that the SS information generated by the analysis pass for a program and attached

to its executable is correct (e.g., signed and checked for trusted binaries). This is the case in the
cross- and in-domain settings (Section 2.3). In these settings, the victim is compiled by a benign
compiler that generates a correct SS. In contrast, in the domain-bypass setting, the program itself
is malicious. However, domain-bypass attacks [19, 21, 23, 25, 265] exploit an implementation
issue—deferred handling of exceptions—which is fixed in upcoming processors [266], and so are
not the focus of forward-looking defenses. We consider them out of scope.
We further assume that a program’s SS information is not tampered with. In the cross-domain

setting, the victim has no motivation to tamper with its own SS. In the in-domain setting, the sand-
box prevents any attacker-controlled code from tampering with the SS (which would be computed
or verified by the sandbox’s trusted runtime system). Moreover, the integrity of the SS in dis-
tributed software packages can be verified together with the integrity of the entire package, using
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well-established integrity verification techniques such as digital signatures [267, 268]. In all of
these cases, if an attacker is able to tamper with the victim’s SS, then she is able to modify the
binary, which means that she can mount much more harmful attacks than speculative execution
attacks.

7.4 THE INVARSPEC ANALYSIS PASS

InvarSpec includes an intra-procedural program analysis pass that accepts as input a program in
source code or binary. Source code is preferred, since it allows a better analysis because it contains
more information. InvarSpec is also told what kind of instructions are transmitters and squashing
ones, and the threat model. InvarSpec can support multiple threat models and augment multiple
hardware defense schemes.
The analysis pass generates, for each transmit and squashing instruction 𝑖, the set of squashing

instructions that are safe for 𝑖. The program counters (PCs) of these safe squashing instructions
form the Safe Set (SS) for 𝑖. The InvarSpec pass has two levels: the Baseline analysis and the more
aggressive Enhanced analysis. We consider each in turn.

7.4.1 Baseline Analysis

Basic Algorithm. InvarSpec starts by generating the Program Dependence Graph (PDG) [269]
of each procedure in the program. The PDG represents the dependence relationships among the
instructions in the procedure. Each instruction is a node, and a directed edge from node 𝑖 to node 𝑗
means that 𝑖 is directly control or data dependent on 𝑗. The edge is labeled “CD” if it is a control
dependence, or “DD” if it is a data dependence.
The algorithm to generate the PDG of a procedure takes as inputs the procedure’s control-flow

graph (CFG) and data-dependence graph (DDG). The DDG includes dependencies through both
registers and memory. For each instruction 𝑖, the algorithm adds an outgoing edge to all the in-
structions 𝑑 that 𝑖 directly depends on.
InvarSpec then computes the SS for each transmit and squashing instruction in the procedure.

Algorithm 7.1 shows the pseudo-code for 𝑔𝑒𝑡𝑆𝑆, which computes the SS for instruction 𝑖. 𝑔𝑒𝑡𝑆𝑆
takes as inputs 𝑖 and the CFG, DDG, and PDG of the procedure. It first computes ancSI, which
is the set of all the squashing instructions that are ancestors of 𝑖 in the CFG. These are potential
candidates for the SS. Then, Line 7.1 calls 𝑔𝑒𝑡𝐼𝐷𝐺, which computes the Instruction Dependence
Graph (IDG) of 𝑖.
The IDG of 𝑖 is a subgraph of the PDG that includes 𝑖 plus all the instructions that may affect
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Algorithm 7.1: Computing the SS for an instruction.
Function getSS(𝑖, 𝐶𝐹𝐺, 𝐷𝐷𝐺, 𝑃𝐷𝐺) is

𝑎𝑛𝑐𝑆𝐼 ← {𝑎 ∈ getAnces(𝐶𝐹𝐺, 𝑖) | isSquashInsn(𝑎)}
𝐼𝐷𝐺 ← getIDG(𝑖, 𝐶𝐹𝐺, 𝐷𝐷𝐺, 𝑃𝐷𝐺)
𝑑𝑒𝑝𝑠 ← {𝑑 ∈ getDesc(𝐼𝐷𝐺, 𝑖) | isSquashInsn(𝑑)}
𝑆𝑆 ← 𝑎𝑛𝑐𝑆𝐼 ⧵ 𝑑𝑒𝑝𝑠
return SS

end
Function getIDG(𝑖, 𝐶𝐹𝐺, 𝐷𝐷𝐺, 𝑃𝐷𝐺) is

𝐼𝐷𝐺 ← DirectedGraph()
for 𝑑 in getCtrlDeps(𝐶𝐹𝐺, 𝑖) do

addNode(𝐼𝐷𝐺, 𝑑)
addEdge(𝐼𝐷𝐺, 𝑖, 𝑑, ‶𝐶𝐷")
addDescGraph(𝑑, 𝐼𝐷𝐺, 𝑃𝐷𝐺)

end
for 𝑑 in getDataDeps(𝐷𝐷𝐺, 𝑖) do

if ¬(isLoad(𝑖) ∧ isStore(𝑑)) then
addNode(𝐼𝐷𝐺, 𝑑)
addEdge(𝐼𝐷𝐺, 𝑖, 𝑑, ‶𝐷𝐷")
addDescGraph(𝑑, 𝐼𝐷𝐺, 𝑃𝐷𝐺)

end
end

end

whether 𝑖 executes or the values of 𝑖’s source operands. Intuitively, the instructions in the IDG
should not be placed in the SS for 𝑖. If 𝑖 is a load, the IDG does not contain stores that may update
the memory location that 𝑖 loads. Such stores are in the DDG because the DDG captures all the data
dependencies, including those that affect the load’s result; such stores are not in the IDG because
they cannot affect whether 𝑖 executes or the values of 𝑖’s operands.
𝑔𝑒𝑡𝐼𝐷𝐺 first creates an empty IDG graph (Line 7.1). It then adds to the graph all the instructions

that 𝑖 has direct control dependence on or that 𝑖’s source operands have direct data dependence on.
Finally, for each such instruction, 𝑔𝑒𝑡𝐼𝐷𝐺 calls 𝑎𝑑𝑑𝐷𝑒𝑠𝑐𝐺𝑟𝑎𝑝ℎ, which adds to the IDG all the
descendants of the instruction in the PDG.
Back to 𝑔𝑒𝑡𝑆𝑆, Line 7.1 collects all the squashing instructions from the IDG into deps; 𝑖 itself

is not in deps unless it depends on itself (due to a program loop). Finally, Line 7.1 subtracts deps
from ancSI. The result is the SS of 𝑖.
Procedure Calls. The InvarSpec analysis pass is intra-procedural and, therefore, only considers
dependencies inside a procedure. Interactions between procedures are handled as follows. First,
consider a caller procedure. InvarSpec conservatively assumes that the callee may modify any
memory location. Hence, InvarSpec treats a procedure call instruction as a store that may alias
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with any subsequent loads. For registers, InvarSpec uses calling conventions, which preserve some
register values.
Second, consider a callee procedure. The SS of an instruction does not contain PCs of squash-

ing instructions outside of the procedure. This design conservatively assumes that all squashing
instructions outside of the procedure are unsafe. While this design is conservative, it is sound.
In a recursive procedure, the caller is the same as the callee. In this case, more dependencies

may exist between instructions in the procedure than captured by our intra-procedural analysis. To
see why, consider Figure 7.3. In the example, instruction ld x is a transmitter, and 𝑏𝑟 is a squashing
instruction that we would prefer to be in the SS of ld x. However, because the call is recursive,
and the branch decides whether the call is executed, the ld x in the callee depends on the 𝑏𝑟 in
the caller. More generally, if a recursive procedure call (Line 3) has a control dependence or a
data dependence (e.g., due to call arguments) on a squashing instruction, that squashing instruction
should not be placed in the SS of any other instruction in the procedure.

1 foo() {
2 if (...) { // br
3 foo(); // call
4 }
5 ld x; // ld
6 }

Figure 7.3: Code snippet with a recursive call.

Unfortunately, we cannot simply solve the problem via program analysis: because of procedure
pointers and indirect recursive calls, it is typically hard to identify recursive functions. Hence, we
use hardware as follows. We still place the above squashing instruction in the SS of ld x, but the
hardware places a fence at the beginning of each procedure. Such fence only prevents the execution
of subsequent transmitters until the call instruction reaches the ROB head. With this support, the
callee is not affected by squashing instructions from the caller. In practice, this support causes only
a minor slowdown to the code run with InvarSpec, since compilers typically inline short functions
in the caller. Our fence support handles not only direct but also indirect recursion.

Soundness & Completeness of Analysis. Our analysis labels squashing instructions as safe or
unsafe. Soundness considers whether an unsafe squashing instruction may be labeled as safe, and
completeness whether a safe squashing instruction may not be labeled as such.
The InvarSpec analysis is sound because it closely follows the definition of speculation invari-

ance within procedures: no execution path from a safe squashing instruction to a transmitter can
affect whether the transmitter executes or what source operands it uses. When our analysis can-
not determine all execution paths, e.g., due to indirect jumps, it conservatively does not place the
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squashing instruction in the SS.
The InvarSpec analysis is not complete, due to at least two reasons. The first one is that it is

not inter-procedural, which would be expensive and potentially unsound. The second one is the
limitations of pointer-aliasing analysis. Incompleteness hurts performance but not correctness.

7.4.2 Enhanced Analysis

Key Insight. The Baseline analysis considers all possible dependencies when generating an SS.
However, some of the dependencies may not occur on all execution paths. If we could neglect such
dependencies, unless they really do occur, we could make the SS bigger, which could lead to speed
up.
To illustrate the problem, consider the code in Figure 7.4(a), where 𝑙𝑑3 is a transmitter. Assume

that 𝑙𝑑1 takes a long time to execute (e.g., because 𝑧misses in the cache), while 𝑏𝑟 resolves quickly
and, typically, is not taken. Figure 7.4(b) shows the IDG of 𝑙𝑑3. We see that 𝑙𝑑3 has a data
dependency on 𝑙𝑑2; 𝑙𝑑2 has a control dependency on 𝑏𝑟 and a data dependency on 𝑙𝑑1.

br ld1

ld2

ld3

DDCD

DD

br ld1

ld2

ld3

CD

DD

y = ld z; // ld1

if (a) { // br

x = ld y; // ld2

}

ld x; // ld3

(a) (b) (c)

Figure 7.4: Code pattern that can be sped-up: (a) source code, (b) IDG of transmitter 𝑙𝑑3, and (c)
pruned IDG of 𝑙𝑑3 computed by the Enhanced analysis.

Given this IDG, using InvarSpec’s Baseline analysis, 𝑙𝑑3’s SS will not contain 𝑙𝑑2, 𝑏𝑟, or 𝑙𝑑1
because they are in 𝑙𝑑3’s IDG. They can affect the execution of 𝑙𝑑3. Hence, InvarSpec will not
send 𝑙𝑑3 to memory until all three instructions have reached their OSP.
However, consider the case when 𝑏𝑟 quickly resolves as not taken, and 𝑙𝑑1 takes a long time to

complete. In this case, 𝑙𝑑3 is stalled by 𝑙𝑑1, although 𝑙𝑑3 has no runtime dependency on 𝑙𝑑1.
The root of this stall is that InvarSpec’s Baseline analysis does not consider the true runtime

dependencies (i.e., the Baseline analysis is not flow/path-sensitive [270]). If, instead, we consider
the path taken, we can show that, since 𝑙𝑑3 depends on 𝑙𝑑1 only if 𝑙𝑑2 appears in ROB (i.e., 𝑏𝑟 is
taken), putting 𝑙𝑑1 in 𝑙𝑑3’s SS is actually safe.
Specifically, if 𝑏𝑟 resolves and 𝑙𝑑2 appears in the ROB, 𝑙𝑑2 effectively shields 𝑙𝑑3 from 𝑙𝑑1: 𝑙𝑑3

will not be sent to memory until 𝑙𝑑2 reaches its OSP. By that time, 𝑙𝑑1 has reached its OSP. Hence,
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the scheme does not need to directly check for 𝑙𝑑1. Placing 𝑙𝑑1 in 𝑙𝑑3’s SS still results in a correct
execution.
If, instead, 𝑏𝑟 resolves and 𝑙𝑑2 does not appear in the ROB, 𝑙𝑑3 can safely execute without

waiting for 𝑙𝑑1. Hence, putting 𝑙𝑑1 in 𝑙𝑑3’s SS keeps correctness and makes the execution faster
than with the Baseline analysis. Overall, in 𝑙𝑑3’s IDG, we can effectively remove the edge to 𝑙𝑑1
(Figure 7.4(c)).

Understanding the Enhanced Analysis. Based on the previous discussion, InvarSpec’s Enhanced
algorithm involves taking the IDG of an instruction i and removing some of the squashing instruc-
tions. The squashing instructions that are removed can be placed in the SS of i; the ones that remain
cannot.
To understand when a squashing instruction can be removed, we need to understand when a

squashing instruction shields another. Specifically, given an instruction 𝑖 that depends on a squash-
ing instruction 𝑗, which in turn depends on a squashing instruction 𝑘, when does 𝑗 shield 𝑖 from
𝑘?
We have seen in Figure 7.4(b) that if the edge from 𝑗 to 𝑘 is a data dependence, 𝑗 shields 𝑖, and

we can remove the edge from 𝑗 to 𝑘 (i.e., the edge from 𝑙𝑑2 to 𝑙𝑑1). Instruction 𝑖 cannot reach its
ESP until 𝑗 reaches its OSP, and in turn 𝑗 cannot reach its ESP (let alone its OSP) until 𝑘 reaches
its OSP. By the time 𝑗 reaches its OSP, 𝑘 cannot affect 𝑖 anymore.
However, if the edge from 𝑗 to 𝑘 is a control dependence, the behavior is different. An example

is the edge from 𝑙𝑑2 to 𝑏𝑟 in Figure 7.4(b). Branch 𝑏𝑟 controls the value of 𝑥 that 𝑙𝑑3 uses: either
the value returned by 𝑙𝑑2 or not. 𝑙𝑑3 cannot be sent to memory until 𝑏𝑟 has reached its OSP. If we
removed the edge from 𝑙𝑑2 to 𝑏𝑟, 𝑙𝑑3 would not wait for 𝑏𝑟’s OSP, which could cause an incorrect
execution. Indeed, suppose we remove it. Then, suppose that 𝑏𝑟 mispredicts as not taken, and
hence 𝑙𝑑2 is not in the ROB to shield 𝑙𝑑3. In this case, 𝑙𝑑3 would be incorrectly sent to memory
before 𝑏𝑟 reached its OSP. Overall, the edge from 𝑙𝑑2 to 𝑏𝑟 cannot be removed and 𝑏𝑟 cannot be in
𝑙𝑑3’s SS.
Consider nowwhen the instruction 𝑖 is control dependent on a squashing instruction 𝑗, to find out

what instructions can 𝑗 shield. Figure 7.5(a) shows an example code where 𝑙𝑑2 is the transmitter.
𝑙𝑑2 is control dependent on 𝑏2 which, in turn, is control dependent on 𝑏1 and data dependent on
𝑙𝑑1. Figure 7.5(b) shows the corresponding IDG.
In this example, 𝑏2 shields 𝑙𝑑2 from 𝑙𝑑1: 𝑏2 will not reach its OSP until 𝑙𝑑1 reaches its OSP, by

which time 𝑙𝑑2 does not need to consider 𝑙𝑑1. Hence, InvarSpec can remove the edge from 𝑏2 to
𝑙𝑑1 and put 𝑙𝑑1 in 𝑙𝑑2’s SS. The code will now run faster if 𝑙𝑑1 takes long to execute, 𝑏1 reaches
its OSP quickly and is not taken.
On the other hand, 𝑏2 does not shield 𝑙𝑑2 from 𝑏1. If we removed the edge from 𝑏2 to 𝑏1,
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b1 ld1

b2

ld2

DDCD

CD

b1 ld1

b2

ld2

CD

CD

y = ld z; // ld1

if (a) { // b1

if (y) { // b2

return;

}

}

ld x; // ld2

(a) (b) (c)

Figure 7.5: Code pattern to show when edges can be removed.

𝑙𝑑2 would not wait for 𝑏1’s OSP, which could cause an incorrect execution. Indeed, suppose we
remove the edge. Then, suppose that 𝑏1 mispredicts as not taken, and hence 𝑏2 is not in the ROB
to shield 𝑙𝑑2. In this case, 𝑙𝑑2 would be incorrectly sent to memory before 𝑏1 reached its OSP.
Hence, the 𝑏2 to 𝑏1 edge needs to remain in the IDG, and 𝑏1 cannot be in 𝑙𝑑2’s SS. Figure 7.5(c)
shows the resulting IDG.
Overall, outgoing DD edges from squashing instructions can be removed, while CD edges can-

not. The fundamental reason is that runtime data dependencies are path-sensitive—i.e., they are
a function of the execution path followed. Control dependencies are path-insensitive, in that they
exist irrespective of which of the two paths is taken by the execution.
If a DD edge starts from a non-squashing instruction, the edge cannot be removed. This is

because a non-squashing instruction does not prevent a younger instruction from executing and,
therefore, cannot shield it.

Enhanced Algorithm. Based on the previous discussion, we now outline InvarSpec’s Enhanced
analysis. Algorithm 7.2 shows the pseudo-code of function pruneIDG, which takes the IDG of an
instruction 𝑖 and generates a pruned IDG for 𝑖. The function traverses all the nodes in the IDG
except 𝑖 (the IDG root). If an instruction in the IDG is squashing, we check its outgoing edges. All
the edges that are DD are removed.
The pruned IDG is then passed to function getSS of Algorithm 7.1 to compute the SS of the

instruction. Because some squashing instructions are now unreachable in the pruned IDG, the
Enhanced algorithm places more instructions in the SS of the instruction than the Baseline one.
The result is a faster execution of the program.

7.4.3 Truncating the Safe Set

The SS of an instruction can contain the PCs of many instructions. To keep the hardware simpler,
we propose to truncate the SS to a fixed size. For performance, we would like to keep only ”the
most useful” SS PCs. These are the PCs of the safe squashing instructions that are the most likely
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Algorithm 7.2: Pruning an IDG.
Function pruneIDG(𝐼𝐷𝐺) is

for 𝑖 in getNodes(𝐼𝐷𝐺) ⧵ {getRoot(𝐼𝐷𝐺)} do
if isSquashInsn(𝑖) then

for 𝑒 in getOutEdge(𝐼𝐷𝐺, 𝑖) do
if isDataDep(𝑒) then

removeEdge(𝐼𝐷𝐺, 𝑒)
end

end
end

end
return 𝐼𝐷𝐺

end

to be in the ROB when the transmitter enters the ROB. The PCs of safe instructions that are far in
dynamic execution and thus already likely out of the ROB are less important to keep.
To find the most useful SS PCs for instruction i, the analysis pass statically finds the shortest

distance, measured in the number of instructions in the function’s CFG, between each safe squash-
ing instruction and 𝑖. Then, it keeps in the SS the 𝑁 safe squashing instructions with the smallest
distances. It further removes those instructions whose distance is larger than the size of the ROB.
We call the scheme 𝑇𝑟𝑢𝑛𝑐𝑁 .
In the SS of an instruction i, each safe instruction is encoded as the signed difference between

the PC of the instruction and the PC of 𝑖. We call them Offsets.

7.5 THE INVARSPEC HARDWARE

To use the SS information, InvarSpec adds two micro-architecture modules. One compares the
SS of an instruction to the older squashing instructions in the ROB; the other holds the SS and
brings it to the pipeline on demand. For the second module, we present two possible designs.

7.5.1 Comparing the SS in the ROB

InvarSpec adds a hardware buffer in the pipeline that contains an entry for each dynamic instruc-
tion i in the ROB that is a transmitter (i.e., a load) or a squashing one (i.e., a load or a branch). We
call it the Inflight Buffer (IFB) (Figure 7.6). Each IFB entry contains the following information for
i: (i) its PC, (ii) a bit 𝑇 that tells that 𝑖 is not a transmitter, (iii) a Ready bitmask used to periodically
check if i has become speculation invariant (SI), (iv) a bit set when i becomes SI, and (v) a bit set
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when i reaches its OSP. The Ready bitmask has as many bits as IFB entries.

Figure 7.6: Hardware to use the SS in the ROB.

ROB entries have pointers to their corresponding IFB entries. IFB entries are allocated and
deallocated in program order when the corresponding instruction is inserted in and removed from
the ROB, respectively. Both IFB and ROB are circular buffers.
When a transmit or squashing instruction i is inserted in the ROB, its SS is requested ( 1 ), as

we will see in Section 7.5.2. The offsets in the SS are summed-up to i’s PC, creating a set of safe
squashing instruction PCs ( 2 ). The resulting PCs are compared to the PCs in the IFB entries that
are both older than i and belong to squashing instructions. Note that, in the Comprehensive threat
model that we use, transmit instructions are also squashing ones. Hence, the PCs from the SS are
compared to the PCs in all the older IFB entries.
Based on these comparisons, the Ready bitmask in the IFB entry for instruction i is set as follows.

If IFB entry k has a PC that matches one of the PCs obtained from the SS or has the OSP bit set,
we know that the entry cannot prevent i from becoming speculation invariant (SI): either entry k
belongs to a safe squashing instruction or to an instruction that has already reached its OSP. In
either case, bit k in the Ready bitmask of instruction i is set. Further, the bits for those IFB entries
not yet owned by any instructions, and for the entry owned by i, are set. The only Ready bitmask
bits of i that remain clear are those for older squashing instructions that are not safe for i and have
not reached their OSP.
If 𝑖 is not a transmitter (𝑇=1), 𝑖 can execute as soon as its operands are ready. In our configuration,

this is the case for branches. Otherwise, 𝑖 can only execute when it becomes SI and its operands
are ready. In either case, the hardware tries to find when 𝑖 becomes SI by checking, at every cycle,
if the IFB entries that caused Ready bitmask bits to remain clear do set their OSP bit. As seen in
Figure 7.6, this is done by simply taking the OSP bits from all the IFB entries and bit-ORing them
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with the Ready bitmask ( 3 ). When all the resulting bits are set, it means that all the squashing
instructions older than i are either safe or have reached their OSP. At this point, i has become SI
and sets its SI bit. If i is a transmitter, it can now execute as soon as its operands are ready.
After an instruction has satisfied the condition for its SI bit to be set and has executed, the logic to

set its OSP bit depends on what type of instruction it is. Specifically, if it is a branch, the hardware
sets its OSP bit right away. If it is a load, setting the OSP bit has to wait until the load reaches
the point where it cannot be squashed anymore based on the threat model. For the Comprehensive
model that we use, this is when the load reaches the ROB head.
There are two corner cases that are easily solved. First, if the IFB runs out of space, the ROB

stops taking in new instructions. Second, if the SS for instruction i is not yet in the pipeline when
i in inserted in the ROB, and there are older entries in the IFB that have their OSP bit clear, the
hardware assumes that such entries are all unsafe. Hence, the corresponding Ready bitmask bits
remain clear.

7.5.2 Storing and Bringing the SS to the Pipeline

The InvarSpec pass generates the SSs for the Squashing and Transmit Instructions (STIs) in
the program. However, a sizable fraction of the STIs have empty SSs. Hence, we envision the
InvarSpec pass to mark in the executable those STIs that have a non-empty SS.
Logically, such a mark can be a set bit in the opcode of the STI. In practice, in the x86 ISA, there

is no such bit available. Hence, we can use an approach that has been used by Intel for lock elision:
re-purpose a previously-ignored instruction prefix to mark instructions [271]. Specifically, we can
reuse the XRELEASE prefix—which today is meaningful only for stores—to mark that the prefixed
STI (a load or a branch in our case) does have an SS. This means that the encoding of STIs with
an SS grows by the 1-byte prefix.
This approach changes the executable, but maintains backward compatibility. Because current

processors ignore this prefix for STIs, the new executable runs on any x86 machine.
With this support in place, we now focus on how to store the SS and bring it to the pipeline

on demand. We propose two alternatives: a software-based solution that is simple but makes the
executable backward incompatible, and a hardware-based solution that is more complex but keeps
backward compatibility. We outline each in turn, but we will only evaluate the one that keeps
backward compatibility.
Software-Based Solution. In this solution, the InvarSpec analysis pass embeds the SS of an STI
in the code of the program, right after the STI. For example, the pass could add an SS with 12
PC offsets of 10-bits each, for a total of 15 bytes. As an STI with prefix is decoded, the decoding
hardware extracts the adjacent SS from the code stream. When the STI is inserted in the ROB, its
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SS is readily available for the operation 1 in Figure 7.6. This solution is simple but not backward
compatible.
Hardware-Based Solution. In this solution, the InvarSpec analysis pass stores the SSs in data
pages, and the core has a small SS Cache that keeps the recently-used SSs close to the pipeline for
easy access in the future. Since the most frequently-executed STIs are in loops, a small SS cache
typically captures the great majority of dynamic SSs needed.
We propose a simple design where, for each page of code, there is a data page at a fixed Virtual

Address (VA) offset that holds the SSs of the STIs in that page of code. Further, the VA offset be-
tween each STI and its SS is fixed. This design does increase the memory consumed by a program
by potentially the size of its instruction page working set (Section 7.7.2). However, it enables fast
SS access.
Figure 7.7(a) shows a page of code and its SS page at a fixed VA offset (Δ). When the former

is brought into physical memory, the latter is also brought in. The figure shows a prefixed STI and
its SS. If the distance between the VAs of two consecutive prefixed STIs is less than the size of an
SS, one of the STIs loses the prefix.

the STI
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Figure 7.7: Hardware solution to store and access the SS. In the figure, STI means Squashing or
Transmit Instruction.

Figure 7.7(b) shows the action taken when a prefixed STI is decoded. The VA of the STI is
sent to the SS cache ( 1 ). The SS cache is a small, set-associative cache that contains the most
recently-used SSs. Due to the good locality of STIs in loops, most of the time, the SS cache hits.
In this case, it provides the SS to the pipeline on time to be used when the STI is inserted in the
ROB.
On an SSmiss, the STI’s VA is added to theΔ offset ( 2 ) to obtain the VA of the SS. This address

is sent to the TLB to obtain the Physical Address (PA). After that, but only when the STI reaches
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its Visibility Point (VP), a request is sent to the cache hierarchy to obtain the SS, and bring it to the
SS cache. As a result, this STI is unable to use its SS; it will be used in a future invocation of the
same STI when the SS request hits in the SS cache.
The SS cache does not introduce any side channel because no side effect occurs until the STI

reaches its VP. Specifically, on an SS cache miss, we saw that the SS request is not sent to the cache
hierarchy until the STI’s VP, providing no information to the attacker. On an SS cache hit, the SS
cache’s LRU bits are not updated until the STI reaches its VP.

7.6 EXPERIMENTAL METHODOLOGY

Architectures Modeled. We model the architecture shown in Table 7.1 using cycle-level simu-
lations with Gem5 [230]. All the side effects of transient instructions are modeled. Our baseline
architecture is a conventional processor with no protection against speculative-execution attacks.
We call it UNSAFE.

Parameter Value
Architecture 2.0GHz out-of-order x86 core
Core 8-issue, no SMT, 62 load queue entries, 32 store

queue entries, 192 ROB entries, TAGE branch pre-
dictor, 4096 BTB entries, 16 RAS entries

L1-I Cache 32KB, 64B line, 4-way, 2 cycle Round Trip (RT)
latency, 1 port, 1 hardware prefetcher

L1-D Cache 64KB, 64B line, 8-way, 2 cycle RT latency, 3 Rd/Wr
ports, 1 hardware prefetcher

L2 Cache 2MB, 64B line, 16-way, 8 cycles RT latency
DRAM 50 ns RT latency after L2
SS Cache 64 sets, 4-way, 2 cycle RT latency, each entry has

12 10-bit PC offsets (𝑇𝑟𝑢𝑛𝑐12). For 22nm: area
is 0.0088𝑚𝑚2, dyn. rd. energy is 2.95pJ, leakage
power is 2.31mW

IFB 76 entries. For 22nm: area is 0.0022𝑚𝑚2, dyn. rd.
energy is 0.99pJ, leakage power is 0.58mW

Table 7.1: Parameters of the simulated architecture.

We augment this architecture with several hardware defense schemes that use loads as the trans-
mitters. We use the Comprehensive threat model, with both branches and loads as squashing in-
structions. The defense schemes are: (i) delaying with fences all speculative loads until they reach
their Visibility Point (VP) [118] (FENCE); (ii) Delay-On-Miss, which delays speculative loads that
miss in L1 until their VP [120, 121] (DOM); and (iii) InvisiSpec, which executes speculative loads
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Figure 7.8: Execution time of the applications on different architecture configurations, all normal-
ized to UNSAFE. The three plots correspond, from top to bottom, to configurations related to the
FENCE, DOM, and INVISISPEC defense schemes. Each plot has a different Y-axis range.

invisibly before their VP [118] (INVISISPEC). Wemodel these defense schemes as they are (D), aug-
mented with the Baseline InvarSpec analysis (D+SS), and augmented with the Enhanced InvarSpec
analysis (D+SS++). The resulting configurations are shown in Table 7.2.

Configuration Description
UNSAFE Unmodified x86 architecture
FENCE Delay all speculative loads with fences [118]
FENCE+SS FENCE augmented with Baseline InvarSpec
FENCE+SS++ FENCE augmented with Enhanced InvarSpec
DOM Delay speculative loads on L1 miss [120, 121]
DOM+SS DOM augmented with Baseline InvarSpec
DOM+SS++ DOM augmented with Enhanced InvarSpec
INVISISPEC Execute speculative loads invisibly [118]
INVISISPEC+SS INVISISPEC augmented with Baseline InvarSpec
INVISISPEC+SS++ INVISISPEC augmented with Enhanced InvarSpec

Table 7.2: Defense configurations modeled.

Applications and Analysis Pass. We run SPEC17 [231] and SPEC06 [272] applications with the
reference input size. Because of simulation issues and binary analysis tool malfunction, we do not
report on 2 applications out of 23 from SPEC17 and 4 out of 29 from SPEC06. For each application,
we use SimPoint [232] to generate up to 10 representative intervals that accurately characterize the
end-to-end performance of the application. Each interval contains 50 million instructions. We run
Gem5 on each interval with system-call emulation mode with 1 million warm-up instructions.
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Our InvarSpec analysis pass implementation is based on Radare2 [273], a state-of-the-art open-
source binary analysis tool. It is performed on x86 binaries. However, it can also be implemented
as a compiler pass and be performed on source code during compilation.

7.7 EVALUATION

7.7.1 Overall Performance Results

Figure 7.8 shows the execution time of SPEC17 and SPEC06 applications on all the configu-
rations of Table 7.2. The three plots correspond, from top to bottom, to configurations related to
the FENCE, DOM, and INVISISPEC defense schemes. Each plot has a different Y-axis range. All
bars are normalized to UNSAFE. Each plot shows each SPEC17 application, the average of SPEC17
applications, and the average of SPEC06 applications.
Going from top to bottom, we see that FENCE is the slowest scheme among all schemes evaluated.

On average, it has an overhead of 195.3% on SPEC17 and 199.3% on SPEC06. FENCE+SS++
reduces the average overhead significantly, from 195.3% to 108.2% on SPEC17, and from 199.3%
to 101.9% on SPEC06.
DOM exhibits a bimodal behavior on SPEC17 applications. While it has low overhead on about

half of the applications, its overhead is very high on the rest. For example, the overhead is 169.6%
on parest and 107.3% on bwaves. On average across all applications, DOM’s overhead is 39.5% on
SPEC17 and 46.1% on SPEC06. Adding support for Enhanced SS on top of DOM (DOM+SS++)
substantially reduces this overhead. Enhanced SS is typically effective in the cases when DOM has
high overhead. Specifically, it brings down parest’s overhead to 99.7% and bwaves’s to 21.8%.
It does so by allowing cache-missing loads that are speculation invariant to proceed—rather than
stalling them. On average, DOM+SS++ reduces the execution overhead from 39.5% to 24.4% on
SPEC17, and from 46.1% to 22.3% on SPEC06.
INVISISPEC’s average overhead is 15.4% on SPEC17 and 18.0% on SPEC06. This overhead is

lower than the corresponding DOM overhead. INVISISPEC+SS++ speeds-up the execution over IN-
VISISPEC. On average, the overhead of INVISISPEC+SS++ is only 10.9% on SPEC17 and 9.6% on
SPEC06. In INVISISPEC+SS++, when a speculative load is ready to issue to memory, if it is spec-
ulation invariant, it is issued to memory normally; in INVISISPEC, the load is issued as an invisible
load and hence requires two loads.
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7.7.2 SS Analysis

We evaluate the performance impact of InvarSpec’s design choices by conducting sensitivity
studies for FENCE+SS++, DOM+SS++, and INVISISPEC+SS++ on SPEC17.
SS coverage. One design decision is how many bits to use to encode an SS offset, i.e., the distance
between the PCs of a safe instruction and a transmitter. This number affects how many offsets an
SS entry can encode.
Figure 7.9 shows the average normalized execution time of the schemes on SPEC17 when vary-

ing the number of bits per SS offset. The size of SS is fixed to 12 offsets. All data are normalized
to the corresponding base hardware scheme (FENCE, DOM, and INVISISPEC). We see that, as the
number of bits decreases, the execution time increases with different degrees. When the number
of bits is smaller than 10, the performance degradation becomes non-negligible. Thus, our design
uses 10 bits to encode an SS offset, which provides a performance similar to the unlimited number
of bits.

Unlimited 12 11 10 9 8 7 6
Number of Bits Per SS Offset

60%

70%

80%

90%

100%

Av
er

ag
e 

No
rm

al
ize

d
Ex

ec
ut

io
n 

Ti
m

e

Fence+SS++ DOM+SS++ InvisiSpec+SS++

Figure 7.9: Normalized execution time when varying the number of bits per SS offset. All execu-
tion times are normalized to their corresponding base hardware schemes without InvarSpec.

Truncation. Another design decision is the SS size, namely the maximum number of SS offsets
to keep in an SS entry. Figure 7.10 shows the average normalized execution time of the schemes
with various SS sizes. Each SS offset is 10 bits. All data are normalized as in Figure 7.9. We see
that, as the SS size increases, the execution time decreases. Compared to an unlimited SS size, all
truncation configurations have a performance degradation. An SS size equal to 12 offsets is a good
design point and, therefore, is our default design.
SS Cache. Figure 7.11 characterizes the SS cache. It shows the SS cache hit rate (right Y axis)
and average normalized execution time of the applications (left Y axis) for different SS cache ge-
ometries. We compare our default configuration (4-way set-associative with 64 sets) to geometries
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Figure 7.10: Normalized execution time when varying the SS size. All execution times are nor-
malized to their corresponding base hardware schemes without InvarSpec.

with the same associativity but fewer or more sets. We also compare to a fully-associative cache
of the same size (256 lines). All execution times are normalized as in Figure 7.9.
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Figure 7.11: Normalized execution time and SS cache hit rate when changing the SS cache. Exe-
cution times are normalized to the corresponding base hardware schemes without InvarSpec.

Increasing the SS cache size from our default configuration only slightly decreases the execution
time of DOM+SS++ and INVISISPEC+SS++, but FENCE+SS++’s execution time keeps decreasing
as the SS cache size grows. Decreasing the SS cache size from our default configuration increases
the execution time of every scheme.
The average hit rate shows that the cache size is more important than the associativity. Reduc-

ing the cache size for the same associativity decreases the hit rate. However, for the same size,
increasing the associativity from 4 to full causes a minimal change. Overall, our default design
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strikes a good trade-off between performance and hardware complexity.
Memory Footprint. We measure that, on average, about half of the code pages in an application
have at least one non-empty SS. To estimate an upper bound on the amount of memory required
to store this SS state at run time, we add-up all the code pages in an application that have at least
one non-empty SS. In reality, not all of the SS pages may be in memory at the same time. We call
the resulting size the Conservative SS Footprint. We also measure the peak memory usage of each
application with the reference input at any point in the program execution. We call the resulting
size the Peak Memory during Execution.
Table 7.3 shows the two metrics for the 5 applications with the largest conservative SS footprint,

and the average metrics across all SPEC17 applications. We can see that the memory overhead of
storing the SS state is negligible compared to the peak memory that an application uses. The SS
only causes a 0.55%memory overhead on average. For blender, which has the largest SS footprint,
the overhead is only 1.32%.

SPEC17 App. Conservative SS Peak Memory during
Footprint (MB) Execution (MB)

blender 8.24 626.31
perlbench 8.00 413.09

wrf 7.70 172.15
gcc 5.87 1277.55
cam4 5.27 853.91

SPEC17 Avg. 2.55 462.05

Table 7.3: Assessing the memory footprint of the SS state.

7.7.3 Hardware Overhead

The main InvarSpec hardware is the SS cache and the IFB. The SS cache is relatively simple
because it stores only read-only data. We used CACTI 7.0 [260] to estimate the area and power of
the storage component of these structures for 22nm technology. As shown in Table 7.1, the area,
dynamic read energy, and leakage power of the storage structures is small.

7.7.4 Discussion

Interaction with a JIT Compiler. Our scheme is compatible with a JIT compilation environ-
ment. In this case, the dynamic generation of a binary is augmented with a step that runs the
InvarSpec analysis pass and generates the SSs. In practice, this step does not take long because
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it substantially reuses information that the compiler has just generated. We cannot provide an ac-
curate estimate of this extra execution time because our implementation of the InvarSpec analysis
pass is not optimized.
Reducing Execution Overhead Further. There are several approaches that could further reduce
the execution overhead with InvarSpec. Three that come to mind are to increase the SS size, in-
crease the SS cache size, and improve the Enhanced compiler analysis. The first approach can only
decrease the execution overhead by a few percentage points. Indeed, Figure 7.10 showed the over-
head with unlimited-sized SS entries, which is an upper bound. The second approach also gives
modest gains. We have evaluated a configuration with an infinite SS cache with unlimited-sized
SS entries. The result is that FENCE+SS++, DOM+SS++, and INVISISPEC+SS++ further reduce
the average execution overhead from 108.2% to 90.4%, from 24.4% to 21.8%, and from 10.9%
to 10.2%, respectively. The third approach, namely improving the Enhanced compiler analysis,
may deliver more significant gains, especially if it involves adding inter-procedural analysis. Such
approach likely involves non-trivial effort, and is our future work.

7.8 RELATED WORK

As indicated in Sections 7.1 and 2.3.3, there are many defense schemes against speculation at-
tacks. Some are software schemes, based on stopping speculation either with fences [242, 243, 244]
or by injecting data-dependencies into the code [243, 245]. There are many hardware schemes
(e.g., [54, 116, 118, 119, 120, 121, 122, 124, 125, 241]). Of these hardware schemes, many of
those that do not consider timing attacks can be extended to support InvarSpec (e.g., [118, 119,
120, 121, 122]). InvarSpec enhances hardware techniques with software information.
The STT [116], SpecShield [241], and NDA [255] hardware schemes have a different threat

model than those that InvarSpec extends in this chapter. Indeed, the schemes in this chapter protect
all data from being leaked by speculative execution; STT, SpecShield, and NDA protect only data
that is read by mis-speculated execution, and consider data in retired register file state not to be a
secret.
To see the difference, consider the example in Figure 7.12. In the example code, although secret

would not be leaked in a non-speculative execution, STT, SpecShield, and NDA do not apply pro-
tection to the mis-speculated load(secret) instruction, because secret was read into a register
by a bound-to-commit instruction. In contrast, the schemes that InvarSpec extends in this chapter
do not allow performing the load(secret) without protection before the branch resolves.
Despite this difference in protection scope, the main principle of InvarSpec to statically analyze

code and dynamically disable defense protection earlier could also be adapted to extend schemes
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1 secret = load(secret_ptr); // soon to commit
2 if (...) { // mispredicted branch
3 load(secret);
4 }

Figure 7.12: Example that exposes the difference between protecting all data versus only
speculatively-read data.

such as STT, SpecShield, and NDA.
Finally, there are many designs that aim to block cache-based covert channels, using random-

ization [49, 199], encryption [46, 47], cache partitioning [49, 53, 274, 275], or other mecha-
nisms [61, 276]. They do not address speculative execution attacks.

7.9 CONCLUSION

This chapter introduced Speculation Invariance, and showed that it can be used to reduce the
overhead of speculative execution defenses without changing security properties. It also presented
the InvarSpec framework, which includes a program analysis pass to identify Safe instructions, and
micro-architecture that uses this information to find and issue speculation invariant instructions
earlier. InvarSpec is one of the first defense schemes for speculative execution that combines co-
operative compiler and hardware mechanisms. It effectively enhances hardware defense schemes:
it reduces the average execution overhead of fence protection from 195.3% to 108.2%, of DOM
from 39.5% to 24.4%, and of InvisiSpec from 15.4% to 10.9%.
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CHAPTER 8: Conclusion and Future Work

This thesis systematically studies practical side-channel attacks and defenses in public clouds.
First, the thesis presented a comprehensive study on risks of and techniques for co-location between
two mutually distrusting users in modern public cloud FaaS environments. We introduced novel
physical host fingerprinting techniques based on the timestamp counter. These fingerprinting tech-
niques are highly accurate. We used these techniques to reverse engineer the instance placement
policy of Google Cloud Run, a serverless platform, and found exploitable placement behavior. Ex-
ploiting the placement behavior, the attacker can reliably achieve co-location with a target victim
with minimal financial cost.
Next, the thesis demonstrated a series of LLC side-channel attack techniques that help extract

information in a noisy, dynamic production cloud environment. We showed that the state-of-the-art
eviction set construction algorithms are ineffective on Cloud Run due to noise in the production
environment. To address the challenge, we then introduced L2-driven candidate address filtering
and a binary search-based algorithm for address pruning to speed up eviction set construction.
Subsequently, parallel probing and leveraged power spectral density were introduced to identify
the victim’s target LLC set and extract information. In the end, we demonstrated, for the first
time, end-to-end cross-tenant information leakage in the production Google Cloud environment.
Following our report, Google filed a critical-level bug report to their product team andAWS revised
their security whitepaper.
To defend against side-channel attacks with low execution overhead and security guarantees, the

thesis focused on schemes that use dynamic partitioning of hardware resources. These schemes
can be performant and efficient as they can dynamically adjust partition sizes to the demand of
applications. However, the resizing of partitions can reintroduce information leakage. This the-
sis proposed a framework named Untangle that tightly quantifies information leakage in dynamic
partitioning schemes. Relying on the leakage quantification enabled by Untangle, one can define
a security policy such that if the runtime leakage goes beyond a user-defined threshold, no fur-
ther resizings are allowed. Using this design, the user can make an informed security-performance
trade-off.
Finally, the thesis developed two techniques to improve the performance of transient execution

defenses without undermining their security guarantees. The first technique is based on the insight
that the execution of speculative instructions is mostly impeded by waiting until memory consis-
tency violations (MCVs) are impossible. Based on this insight, the thesis proposed Pinned Loads,
a hardware design that tries to make loads invulnerable to MCVs as early as possible, improving
performance. The second technique is based on the insight that there exist “safe instructions” that
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cannot influence the execution and operand values of vulnerable instructions. This insight leads to
a static program analysis that finds such safe instructions and communicates these instructions to
the hardware defense. As a result, the hardware defense can permit earlier execution of vulnerable
instructions without waiting for the completion of safe instructions, reducing execution overhead.

8.1 FUTURE WORK

Our overarching goal is to build secure and efficient public clouds resistant to side-channel at-
tacks. This thesis serves as the first step towards this goal. In the upcoming years, we will com-
prehensively examine and redesign the full cloud-computing stack to secure the public cloud from
side-channel attacks. This endeavor will involve interdisciplinary collaborations with experts in
systems and networking, security, machine learning, programming languages, and software engi-
neering. Here is an outline of our future research directions.

Discovering new side channels across the cloud-computing stack. While our current work [101,
277] has demonstrated end-to-end side-channel attacks in a production public cloud, we believe
this is just the beginning. The evolving heterogeneity of cloud hardware, including the rise of
FPGAs, SmartNICs, and other accelerators, can introduce new classes of hardware side channels.
Similarly, extensive sharing in cloud software services—like schedulers, remote storage, and load
balancers—can lead to software side-channel vulnerabilities. We aim to systematically uncover
these vulnerabilities across the cloud stack. We also envision using software testing techniques as
a potential strategy to efficiently discover these channels.

Assessing side-channel attacks on diverse applications. Side-channel attacks traditionally tar-
get cryptographic libraries. However, modern clouds serve a variety of applications. Our research
will study what information do side channels leak in various non-cryptographic cloud applications.
Questions that we will explore include: Can attackers eavesdrop on a VoIP call? Can attackers
monitor user activities in an e-commerce website run by their competitors? Can attackers steal
documents in collaborative editing applications? Can medical records be exfiltrated from a health-
care application that runs inside a trusted-execution environment (TEE)? We are keen to explore if
such leakages might, under regulations like GDPR, classify as data breaches.

Designing secure, cloud-native hardware-software interfaces. Designing secure hardware for
public clouds is challenging, as cloud applications have large variations in their resource needs
and security goals. A promising approach to tackle this challenge is hardware-software co-design.
Drawing on our prior experience in this area [246, 249], we will design new interfaces that se-
cure public clouds while maintaining high flexibility. This involves developing efficient hardware
resource-isolation primitives and adapting the cloud’s software infrastructure to these primitives.
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Notably, technologies developed along this direction not only mitigate side-channel vulnerabilities,
but also help minimize performance interference among tenants, improving the quality of service.

Managing the risks of side-channel attacks in clouds. Although resource isolation offers the
strongest security guarantees, it might not be applicable to certain resources due to the prohibitive
costs of completely isolating these resources between tenants. Building on the approach of Untan-
gle [197], we will explore probabilistic defenses and assess information leakage using information
theory. Furthermore, we will study: (1) leveraging the noise inherent in the cloud environment to
reduce the leakage of probabilistic defenses, (2) determining the acceptable amount of information
leakage for various application types, and (3) balancing information leakage and performance.

8.1.1 Other Directions

Resource sharing, a fundamental optimization, is also prevalent in emerging hardware designs
like machine-learning accelerators and computing paradigms like edge computing. In the future,
we will uncover and mitigate side-channel vulnerabilities in these new designs and paradigms.

Secure machine-learning (ML) hardware acceleration. As ML becomes ubiquitous, numerous
hardware accelerators are being proposed to improve the performance and energy efficiency of ML
applications. Much like general-purpose processors, these accelerators are expected to be used in
multi-tenant environments. This necessitates a solution to secure computing in accelerators, as
ML applications often process sensitive user information such as medical records and personal
photos. We will extend trusted-execution environment (TEE) designs and side-channel defenses
to harden ML accelerators. Specifically, given the heterogeneous nature of accelerators, We will
focus on developing general frameworks that efficiently generate secure accelerators, tailored to
threat models and application needs, while minimizing manual involvement.

Side channels in edge computing. Unlike cloud computing, edge computing operates closer to
data sources such as Internet-of-Things (IoT) devices. This proximity means that resource sharing
in edge computing inherently has physical locality. For instance, a set of IoT devices in a house-
hold might share the same edge gateway, while services monitoring air pollution and traffic in
a neighborhood might share the same local networking and computing infrastructure. A signifi-
cant consequence of this paradigm is that any side-channel leakage is associated with a particular
physical area, allowing attackers to exfiltrate information from victims that are in close physical
proximity. In the long term, we will collaborate with domain experts to discover and mitigate side
channels in edge computing.
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APPENDIX A: Contention-Based Side-Channel Attacks Exploiting the Page Walker

A.1 INTRODUCTION

As discussed in Section 2.2, side channels can be classified along two axes [278]: stateful vs.
stateless and direct vs. indirect. In this appendix, we perform the first investigation of stateless-
indirect channels by exploiting interactions between in-flight operations stemming from the hard-
ware page walker and other sources (e.g., program memory operations). We show how stateless-
indirect channels are possible and enable powerful new attacks. We call our channel and attack
framework Binoculars.
We find that because indirect memory operations are issued outside the purview of normal pro-

cessor structures (e.g., the reorder buffer) they “live by different rules” and exhibit novel inter-
actions with other memory operations. Based on these interactions, we construct novel attack
primitives.
First, we show that shared resource contention between page walker (indirect) loads and regular

(direct) memory operations can cause significant delays in thread execution time (e.g., up to 20,000
cycles) stemming from a single dynamic instruction. This magnitude of delay dwarfs the one
created by any other microarchitectural side channel by at least two orders of magnitude. It enables
Binoculars to create new low-noise attacks that are relatively easy to perform and observe despite
our channel being stateless.
Second, we show how the contention depends on the addresses of the memory operations in-

volved. We show that this address dependence applies not only to high-order address bits (e.g., the
page number) or lower-order address bits (e.g., the bits that map the address to a cache set) but also
to intra cache line address bits and across address spaces. In fact, we show that Binoculars can
leak more bits of a victim’s (virtual) memory address than any prior channel across address spaces.
Using the above attack primitives, we perform end-to-end attacks on security-critical programs.

To start, we design and optimize a covert channel using Binoculars’ underlying stateless-indirect
channel that can achieve a high capacity of 1116 KB/s on a Cascade Lake-X machine. We then
design a side-channel attack that steals keys from OpenSSL’s side-channel resistant ECDSA by
learning the ECDSA nonce 𝑘. Here, the nonce is computed by an implementation of the Mont-
gomery ladder algorithm that is hardened against timing side channels. Binoculars is able to am-
plify subtle nonce-dependent behaviors occurring during execution into large timing delays that can
be measured with low noise. This is critical for the attack to succeed, since each run of ECDSA
uses a different nonce 𝑘. Finally, we fully break kernel ASLR (KASLR).
This appendix makes the following contributions:
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•We investigate and demonstrate the first stateless-indirect channel. It is based on implicit loads
issued by the page walker. The resulting attack framework, Binoculars, has a high signal-to-noise
ratio and leaks a wide range of virtual address bits.
•We design and implement two Binoculars attack primitives. One leaks the byte offset of a store
within the page. The other leaks the full virtual page number of a TLB-missing request.
• We demonstrate end-to-end attacks on real hardware, which include extracting the nonce 𝑘 in
ECDSA with a single victim run and fully breaking KASLR.

A.2 ADDITIONAL BACKGROUND ON X86 MEMORY SYSTEM

A.2.1 Page Tables in x86

The hardware performs virtual to physical address translation by first partitioning the virtual
address into a page number and an offset, and then mapping the virtual page number to a physical
page number using a page table data structure created by the operating system (OS). In x86-64, the
page table is a 4-level radix tree that supports multiple page sizes. We focus on the basic case of
4KB pages. A page table search is called a page walk and is done by a hardware unit called the
page walker on a TLB miss.
Figure A.1a shows the page table structure and the page walk process. Address translation uses

four levels of page tables, which we refer to as 𝑃𝐿4, 𝑃𝐿3, 𝑃𝐿2, and 𝑃𝐿1. The root level, 𝑃𝐿4, is
pointed to by the CR3 register. Each page in the page tables contains an array of 512 8-byte page
table entries (PTEs). The virtual page number is decomposed into four 9-bit PL indexes, each of
which selects a PTE from its corresponding level of the tree. Each PTE holds the physical page
number of the next level of the tree or, at the lowest level, the final translation. Overall, to perform
a page walk, the page walker issues four loads in total.
Because the 4-level page table supports only a 48-bit virtual address space, the 64-bit virtual

addresses in x86-64 must be canonical—meaning that bits 64–48 are equal to bit 47. The address
space is divided into two equal halves [130]. The lower canonical half is user space, while the
upper canonical half is used by the OS kernel. An unprivileged user can only allocate pages in the
lower canonical half.
To speed up the virtual address translation process, x86 processors cache address translations in

two levels of translation lookaside buffers (TLBs). The first level TLBs (iTLB and dTLB) cache
instruction and data translations, respectively. The second level TLB (sTLB) is larger and caches
both instruction and data translations. A page walk is triggered if a translation request misses in
all levels of TLBs. To minimize the TLB-miss penalty, the page walker loads check the cache
hierarchy and so they can benefit from cached PTEs.
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A.2.2 False Dependences in the L1D Cache

On Intel processors, the L1D cache is virtually indexed and physically tagged. It uses part of the
virtual address (VA) bits (e.g., bits 11-6) as the index to find the cache set and uses the physical
address (PA) tag to select the cache line within the set. This design enables the L1D cache to be
accessed in parallel with the TLB translation.
The L1D cache uses the 12 least significant bits (i.e., the offset part) of the VA to detect potential

dependences between multiple reads and writes that are issued to it, before their translations finish.
If a read and a write target addresses with the same offsets (i.e., their 12 least significant bits are the
same), then a dependence is possible. When a potential dependence is detected, one of the requests
is squashed and will retry. The L1D cache thus conservatively prevents simultaneously reading and
writing of addresses that have the same 12 least significant bits (i.e., they are 4K-aliasing) even
though there might be no dependence between the requests (i.e., the dependence may be a false
dependence) [9, 10, 130]. Depending on the implementation, the dependence check can be done
at a word granularity [9]—i.e., the read and the write addresses only need to share bits 11–2 to be
counted as potentially dependent. In this appendix, we say that two addresses have 4K-aliasing if
they have the same bits 11–2. These addresses are subject to false dependences.
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Figure A.1: Overview of the Binoculars attack.
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A.3 THREAT MODEL

We consider an attacker who is an unprivileged user on a hypertheaded multi-core x86 machine.
The attacker’s goal is to learn some of the bits of the address operand of specific memory load/store
instructions in some victim, through local hardware resource utilization changes modulated by the
victim. The victim may be another process (belonging to a different user) or the OS kernel. Either
way, the victim does not share virtual or physical memory with the attacker processes. We assume
that the attacker knows the contents of the victim’s executable.
We assume a system configuration similar to that in prior cross-hyperthread side-channel at-

tacks [8, 9, 10, 12, 13]. The system has Hyper-Threading enabled, and the attacker can interact
with the OS scheduler to run its attack process on a hyperthread that shares the same physical core
with the victim hyperthread. For attacks that rely on observing delays in the victim’s execution,
we do not assume a cooperative victim that times and reports its own execution.

A.4 THE BINOCULARS ATTACK

The CacheBleed [10] and MemJam [9] attacks have shown that existing processors are vulner-
able to false dependences between writes issued by a thread and reads issued by another thread
(Section A.2.2). In this appendix, we show, for the first time, an attack that exploits false depen-
dences between writes issued by a thread and reads issued by the hardware during a page walk
triggered by a second thread. We call the new attack Binoculars.
Compared to the prior false dependence attacks, we will see in this section that Binoculars is

both easier to setup and leaks new bits. Specifically, if the attacker is the writer, Binoculars can
leak the virtual page number of the victim access that triggers the page walk. On the other hand, if
the attacker is the thread that triggers the page walk, Binoculars can leak page offset bits 11-3 of
the address written by the victim. Note, the victim and attacker do not share an address space.
To demonstrate Binoculars, we run experiments on Intel Xeon W-2245 (Cascade Lake-X), In-

tel i7-7820X (Skylake-X), and Intel Xeon E3-1246 v3 (Haswell-EP) platforms. One hyperthread
reads from an address that causes a miss in both TLB levels and hence triggers a page walk. Recall
that, during the page walk, the hardware issues up to four loads to the data cache hierarchy, corre-
sponding to the requested entries in the four page table levels. In Figure A.1a, the four page levels
are called 𝑃𝐿4, 𝑃𝐿3, 𝑃𝐿2, and 𝑃𝐿1, and the actual addresses read are 𝑅𝐴4, 𝑅𝐴3, 𝑅𝐴2, and 𝑅𝐴1.
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The other sibling hyperthread keeps writing to an address 𝑊𝐴. We perform two experiments:
onewhere the𝑊𝐴 has a false dependencewith one of the𝑅𝐴𝑖, and onewhere it does not. Following
past work [9, 10], a false dependence is obtained with 4K-aliasing — in our case, when bits 11-3
of the two addresses are the same because we issue 8-byte loads. We repeat each experiment 100
times, measuring the time taken by the reader hyperthread to complete its TLB-missing access.
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Figure A.2: Distribution of the latency of a TLB-missing access while the sibling hyperthread
keeps issuing writes whose address may or may not alias with the page walker loads. The data is
measured on an Intel Skylake-X.

Figure A.2 shows the histogram of measured read latencies in the two experiments running on
a Skylake-X. To make the histogram readable, we plot the X axis in logarithmic scale. From the
figure, we see that when the page walker loads and the store are not 4K-aliasing, the page read
takes about 100 cycles (including the time for reading the timestamp). However, when there is
4K-aliasing, the latency goes up to ≈20,000 cycles (or 104.3 in the figure). The page walker load
is stalled and delayed for a long time. This very obvious difference in latency is exploited by
Binoculars to leak address bits.
In this section, we discuss the two directions of the Binoculars attack: when the attacker triggers

the page walk (Section A.4.1) and when it performs the repeated writes (Section A.4.2).

A.4.1 Leaking the Page Offset of a Store Address

In this attack, the attacker triggers the page walk and the victim performs repeated writes to the
same address. The attacker keeps changing the address of the page that triggers the page walk and
measures the latency of an access to the page. When the attacker observes a high access latency,
it can deduce that the page offset of a page walk read and of the write have a false dependence.
Since, in this attack, the information flows from victim stores to attacker page walker loads, we
call this primitive the store→load channel.
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To understand the attack, consider Figure A.1b, which shows the addresses of the four loads
issued during a page walk. Given a TLB-missing access to a virtual address VA, the hardware first
reads address 𝑅𝐴4, whose address bits 11-3 are equal to VA bits 47-39. After that, the page walker
reads address 𝑅𝐴3, whose 11-3 address bits are equal to VA bits 38-30. Then, the page walker reads
𝑅𝐴2 and 𝑅𝐴1. Bits 2-0 of 𝑅𝐴4, 𝑅𝐴3, 𝑅𝐴2, and 𝑅𝐴1 are 000 because these loads read 8-byte page
table entries, which are aligned to 8-byte boundaries. If any of these four addresses has a false
dependence with the address WA written by the victim, a long latency access ensues. The false
dependence occurs when two addresses have the same bits 11-3 because we issue 8-byte loads—
i.e., the two addresses have 4K aliasing (Section A.2). Hence, this attack can learn bits 11-3 of the
victim store address, which are the page offset bits with sub-cacheline granularity (Figure A.1c).

1 const u32 secret_offset = 0x528;
2 char *page = mmap(NULL, PAGE_SIZE, ...);
3 while (true) {
4 page[secret_offset] = 0xff;
5 }

Figure A.3: Victim program that demonstrates the store→load channel..

Figures A.3 and A.4 show simplified programs that demonstrate the store→load channel. The
demonstration extracts bits 11-3 of a store address in a victim program. As shown in Figure A.3, the
victim program allocates a page and keeps writing to it at a fixed page offset (i.e., 0x528), which is
a secret. As shown in Figure A.4, the attacker program first allocates 512 continuous pages (Line
4). The page table entries (PTEs) of these 512 pages fill a 4KB 𝑃𝐿1 page, since each PTE is 8 bytes.
Then, for each page, the attacker flushes the page’s translation from TLBs and issues an access to
the page, which triggers a page walk. The page walk of one of the pages will issue a load to a 𝑅𝐴1
address whose bits 11-3 match bits 11-3 in the victim’s𝑊𝐴 address. Because of this 4K aliasing,
the latency of the access to this particular page will be higher.
We run both programs on two different hyperthreads of the same physical core. For each page

of the attacker, we measure the page access latency 100 times and use the average value. The page
walker read of each of the 512 pages tests a different 8-byte aligned address offset within a 4KB
page. Figure A.5 shows the average latency measured at each 𝑃𝐿1 offset on a Skylake-X. As the
plot shows, the page access latencies are very low at most 𝑃𝐿1 offsets. When the 𝑃𝐿1 offset gets
close to the victim’s secret offset, 0𝑥528, the access latency starts to increase, and it reaches its
peak value when the 𝑃𝐿1 offset exactly matches the secret offset. We obtain similar results on a
Haswell-EP and a Cascade Lake-X.
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1 const u32 npages = 512;
2 u32 latencies[npages];
3 const u64 size = PAGE_SIZE * npages;
4 char *base_page = mmap(NULL, size, ...);
5 for (u32 i = 0; i < npages; i++) {
6 char *page = base_page + i * PAGE_SIZE;
7 invalidate_tlb(page);
8 u64 t_start = read_timestamp();
9 maccess(page);
10 u64 t_end = read_timestamp();
11 u32 PL1_index = ((u64)page & 0x1ff000) >> 12;
12 latencies[PL1_index] = t_end - t_start;
13 }

Figure A.4: Attacker program that demonstrates the store→load channel..
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Figure A.5: Demonstration of the store→load channel on a Skylake-X.

The reason why the peak is not sharper is that page walker loads can also be stalled by stores
that access the same L1 cache set. In this case, the two addresses only need to share bits 11-6. As
we will see in Section A.5, this second type of false dependence is harder to induce.
To maximize the number of different offsets monitored by a single TLB-missing access, the

attacker can carefully allocate a page at an address that has a different PL offset at each level. In
this case, as shown in Figure A.1b, the attacker can theoretically monitor up to four different offsets,
using the page walker loads from 𝑃𝐿4, 𝑃𝐿3, 𝑃𝐿2, and 𝑃𝐿1. However, in the current implementation
of x86-64, an unprivileged user can only allocate pages in the lower half of the 64-bit VA space
(Section A.2.1), which means that the attacker does not have full control of the 𝑃𝐿4 index (i.e., bits
47-39 of the VA) and cannot use it to monitor arbitrary store offsets.
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In addition, since we assume an unprivileged attacker (Section A.3), the attacker cannot use
privileged instructions to flush the TLB. Instead, to evict a target translation from the TLB, she has
to build an eviction set of pages. Note that the hash function used in Skylake-X to map a page to
a set in the TLB uses the 𝑃𝐿1 index and part of the 𝑃𝐿2 index (i.e., bits 26-12 of the VA) [8]. As
a result, to build an eviction set, the attacker uses pages with different 𝑃𝐿3 indexes but the same
𝑃𝐿2 and 𝑃𝐿1 indexes. Consequently, the attacker cannot typically use 𝑃𝐿3 indexes to monitor store
offsets, and has to limit herself to monitoring two offsets (using 𝑃𝐿2 and 𝑃𝐿1 indexes) with each
TLB-missing access.

1 const u64 addr = 0x5d21ca821000ull;
2 char *page = mmap(addr, PAGE_SIZE, ...);
3 while (true) {
4 wait_for_attacker();
5 invalidate_tlb(page);
6 u64 t_start = read_timestamp();
7 maccess(page);
8 u64 t_end = read_timestamp();
9 u64 t_diff = t_end - t_start;
10 // signal the attacker process; pass t_diff
11 signal_attacker(t_diff);
12 }

Figure A.6: Victim program that demonstrates the load→store channel.

1 const u32 nindexes = 512;
2 u32 latencies[nindexes];
3 char *page = mmap(NULL, PAGE_SIZE, ...);
4 for (u32 idx = 0; idx < nindexes; idx++) {
5 u32 offset = idx << 3;
6 signal_victim(); // signal the victim process
7 while (wait_for_victim()) {
8 page[offset] = 0xff;
9 }
10 latencies[idx] = get_victim_latency();
11 }

Figure A.7: Attacker program that demonstrates the load→store channel.
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Figure A.8: Demonstration of the load→store channel on a Skylake-X.

A.4.2 Leaking the Virtual Page Number of the Address of an Access
In this attack, the attacker repeatedly stores to a given offset in a page and the victim suffers a

TLBmiss that triggers a page walk. The attacker keeps changing the page offset of the store address
and observes the victim’s performance. When the victim’s access latency is high, one of the page
walk loads is 4K-aliasing with the attacker’s store. The attacker can then learn the 𝑃𝐿 index of
a level of the page table entry. By continuing to change the page offset of the store address, the
attacker can recover the 𝑃𝐿 indexes of all the different page levels. As a result, as we will see later,
the attacker will be able to learn the full virtual page number (VPN) of the victim’s TLB-missing
memory accesses (i.e., bits 47-12). Because the information in this attack flows from victim page
walker loads to attacker stores, we call this primitive the load→store channel.
The process of the attack is shown in Figure A.1b. A page walk issues, in the worst case, loads to

addresses 𝑅𝐴4, 𝑅𝐴3, 𝑅𝐴2, and 𝑅𝐴1. Each of these addresses includes, in bits 11-3, a portion of the
VA of the page accessed. When one of these addresses has the same bits 11-3 bits as the attacker’s
store address (𝑊𝐴)—i.e., it 4K-alias with𝑊𝐴—the victim’s access suffers a long latency. Based
on the observed latency, the attacker can deduce the four sets of 11-3 bits in some order. With some
additional experiments that will be detailed later, the attacker can put together the whole VPN of
the victim access (Figure A.1c).
Figures A.6 and A.7 show simplified programs that demonstrate the load→store channel. To

measure the latency of the victim’s access, the code unrealistically assumes that attacker and victim
processes can communicate via shared memory to synchronize, and that the victim measures its
own latency and reports it to the attacker process. This setting is for demonstration only. A realistic
setting will be shown in Section A.8, where the attacker only relies on the end-to-end execution
time of the victim.

203



The victim program (Figure A.6) first allocates a page at virtual address 0x5d21ca821000,
which corresponds to indexes to 𝑃𝐿4, 𝑃𝐿3, 𝑃𝐿2, and 𝑃𝐿1 equal to 0x0ba, 0x087, 0x054, and
0x021, respectively. Then, the victim program enters a loop where, in each iteration, the victim:
(i) waits for the attacker to signal it, (ii) invalidates the translation of the page from the TLBs, (iii)
accesses the page and measures the access latency, and (iv) signals the attacker, passing the access
latency. The attacker program (Figure A.7) first allocates buffers for latency results and a page to
write to. Then, it enters a loop that iterates over all the possible 512 indexes of page table entries
(PTEs) in a page. For each of the resulting PL address offsets, the attacker: (i) signals the victim
process, (ii) keeps writing to an address at the PL offset in the page until the victim sends it a signal,
and (iv) receives the latency of the victim access and saves it.
We run both programs on two hyperthreads of a physical core. For each PL index, we measure

the latency 100 times and save the average value. FigureA.8 shows the resulting average latency for
each PL index on a Skylake-X processor. Looking at the figure, we see there are four clear latency
spikes. They are at indexes 0x021, 0x054, 0x087, and 0x0ba. These four spikes correspond to the
four 9-bit PL indexes of the victim page. We obtain similar results on a Haswell-EP and a Cascade
Lake-X.
From these latency results alone, we cannot determine which spike corresponds to which page

table level. The full VPN is one of the permutations of these four indexes. There are multiple
strategies to identify the correct permutation. For example, if we know which memory region the
victim accesses (e.g., heap or stack), we can identify the possible 𝑃𝐿4 or even 𝑃𝐿3 indexes, since
these memory regions usually have unique ranges of high-order VA bits. If the victim also happens
to access neighboring pages (i.e., pages that differ in 𝑃𝐿1 indexes), the attacker should observe
nearby spikes, and these spikes correspond to 𝑃𝐿1 indexes. After determining the 𝑃𝐿4, 𝑃𝐿3, and
𝑃𝐿1 indexes, we know which one is the 𝑃𝐿2 index. Last, as will be shown in Section A.8, if the
memory access is to a global variable, the 𝑃𝐿1 index can be derived from the variable’s offset in
the segment.
We can easily redesign the attack so that attacker and victim do not need to synchronize, and

the victim does not need to measure the latency of its own accesses. Instead, the attacker measures
the latency of its stores. The idea is that, when the victim’s page walker load is stalled for a long
time due to 4K aliasing, the victim’s pipeline is blocked, and shared resources are freed-up for
the attacker. As a result, the attacker sees lower latency for its own stores because of less port
contention. Consequently, in Figure A.9, we change the code from Figure A.7 so that, in each
iteration, the attacker measures the latency of issuing 10, 000 stores—and neither synchronizes nor
receives any latency measurement from the victim. This is a more realistic design. Figure A.10
shows the average latency of those 10, 000 stores at different indexes on a Skylake-X. It is clear
that latencies drop at the victim’s PL indexes.
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1 // Attacker program, port contention version
2 const u32 nindexes = 512;
3 u32 latencies[nindexes];
4 char *page = mmap(NULL, PAGE_SIZE, ...);
5 for (u32 idx = 0; idx < nindexes; idx++) {
6 u32 offset = idx << 3;
7 u64 t_start = read_timestamp();
8 for (u32 i = 0; i < 10000; i++) {
9 page[offset] = 0xff;
10 }
11 u64 t_end = read_timestamp();
12 latencies[idx] = t_end - t_start;
13 }

Figure A.9: Port-contention version of the load→store channel attack program.
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Figure A.10: Demonstration of the load→store channel with the port-contention version on a
Skylake-X.

A.4.3 Extensions

Cross Virtual Machine Attack. Binoculars also works if attacker and victim are in two different
virtual machines that share the same physical core. Because in a virtualized environment, a TLB-
missing access also triggers page walker loads, which are subject to contention with stores from
the sibling thread. To verify this, we repeat our experiments in a virtualized environment with
QEMU-KVM (4.2.1) [279] on Skylake-X. The attacker and victim programs run in two different
virtual machines that share the same physical core and run Ubuntu 20.04 LTS (5.4.0-105-generic).
Our experiments show results that are similar to the ones in a non-virtualized environment, and
thus demonstrate Binoculars can be used for cross virtual machine attacks.
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Table A.1: Comparing the characteristics of different side-channel attacks.

Attack Timing
Difference*

Virtual Address (VA)
Bits Leaked

Leakage
Granularity

Cross
VA Space?

Cross
Core?

Port Contention [12, 13] 10−1 cycles n/a 𝜇Ops Yes No
TLBleed [8] 101 cycles Bits 26-12† Memory page Yes No
CacheBleed [10], MemJam [9] 101 cycles Bits 11-2 Sub-cacheline Yes No
Prime+Probe [1] 102 cycles n/a Cache set Yes Yes
Flush+Reload [6] 102 cycles Offset in segment Cacheline No Yes
AVX2-Based [22] 102 cycles n/a AVX2 instruction Yes No‡
Binoculars store→load channel 104 cycles Bits 11-3 Sub-cacheline Yes No
Binoculars load→store channel 104 cycles Bits 47-12 Memory page Yes No
* Magnitude of the maximum timing difference that can be caused by a single dynamic instruction or operation
that the attack uses.

† Applicable to an Intel Skylake-X platform [8]. Actual bits may vary on different microarchitectures.
‡ Our threat model (Section A.3) only considers local hardware resource utilization changes caused by the victim.
Since AVX2-based attacks exploit power management mechanisms that only affect each individual physical core,
we do not consider it as a cross-core channel under our threat model.

Other Paging Schemes. The previous discussion is mainly focused on a 4-level paging design,
which issues four page walker loads to translate a VPN. If other paging schemes (e.g., huge page,
5-level paging) are used, Binoculars will still work with different attacker capabilities.
For the store→load channel, the attacker has no incentive to use huge pages: doing so would

reduce the number of page walker loads and correspondingly the number of page offsets that can be
observed in a single page walk. Using 5-level paging, on the other hand, can boost the attack as one
page walk can monitor five store offsets. For the load→store channel, using huge pages reduces
the number of low-order VPN bits that an attacker can extract. But it is still possible to attack
(kernel) ASLR, as its entropy usually resides in high-order VPN bits (see Section A.8). Using 5-
level paging, the attacker will observe five latency spikes associated with each level of translation,
instead of four spikes shown in Figure A.8 and A.10, which makes finding the correct permutation
of spikes and recover the full VPN harder.

Other CPUs. We believe the root cause of the Binoculars attack is related to Intel’s optimization of
page walker loads (see Section A.5). Therefore, Binoculars is likely exclusive to Intel processors.
For example, the same experiments on anAMD-EPYC-7502 processor show that it does not exhibit
the Binoculars channel.

A.4.4 Discussion

Table A.1 compares the characteristics of Binoculars and existing side-channel attacks. From left
to right, we compare: (i) the maximum timing difference that can be induced by a single dynamic
instruction or operation that the attack uses, (ii) the virtual address bits leaked, (iii) the granularity
of the leakage, and whether the attack is effective (iv) across address spaces or (v) across cores.
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The second column shows the first advantage of Binoculars: its contention effect is very strong.
A single dynamic instruction can create timing differences that are several orders of magnitude
higher than in any other conventional side-channel attack. For example, with port contention, a
dynamic instruction can cause a latency increase equal to a fraction of a cycle on average [12, 13].
Therefore, an attacker requires thousands of dynamic instructions to magnify the effects, or tens
of thousands of replays to denoise the channel [280]. In CacheBleed [10] and MemJam [9], a
dynamic instruction exploiting a false dependence causes a 10-cycle average latency increase. In
side-channel attacks that rely on timing differences between cached and uncached accesses such as
TLBleed, Prime+Probe, and Flush+Reload, the differences range from tens of cycles [8] to a few
hundred cycles [1, 6]. AVX2-based side channel that is exploited in NetSpectre [22] can also cause
a timing difference of a few hundred cycles. Instead, a Binoculars access can trigger a stall of up
to 20,000 cycles. This property makes Binoculars more resilient to noise, which means that it can
recover secrets with fewer runs and with a higher confidence. Also, because of the long duration of
the stall, it is possible to observe the contention even if the attacker cannot measure the time very
precisely—e.g., due to lacking a high-resolution timer.
The third column of Table A.1 shows a second advantage of Binoculars: it leaks a wide range

of virtual address (VA) bits. The column lists the VA bits leaked by each attack. For example, TL-
Bleed [8] can recover the bits that are used by TLB hash functions (i.e., bits 26-12 on a Skylake-X
for the sTLB). Hence, TLBleed can observe only a victim’s memory accesses at a page granular-
ity, and cannot extract the full VPN. CacheBleed [10] and MemJam [9] recover low-order intra-
cacheline bits (i.e., bits 11-2), but miss out on high-order bits. In Flush+Reload [6], because of
ASLR, a shared memory segment can be allocated at different VA in different processes. As a re-
sult, Flush+Reload can only recover VA bits that are not subject to ASLR, namely the offset to the
base of the segment—at a cache line granularity. With Binoculars, the attacker can learn VA bits
11-3 with the store→load channel and bits 47-12 (i.e., the full VPN) with the load→store channel.
The fourth column of Table A.1 shows the leakage granularity of each attack. Binoculars pro-

vides sub-cacheline resolution with the store→load channel and page-level granularity with the
load→store channel. The fifth and sixth columns show whether the attack works across address
spaces and across physical cores. Since Binoculars requires no shared memory, it can attack a
victim running in a different address space. However, it cannot attack a victim on a different core.
Finally, Binoculars has a third, although not unique, advantage: it does not require complex

state preparation. For example, most cache-based side-channel attacks require the victim data to
be present at a given level of the memory hierarchy before the attack. For that, the attacker has
to carefully manipulate cache state, which is slow, sometimes complex, and requires fine-grained
synchronization with the victim process. Binoculars only needs page walkers to trigger loads.
Contention occurs regardless of what level in the cache hierarchy the page walker loads read from.
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A.5 ROOT CAUSE ANALYSIS

In this section, we explore the root cause of the strong resource contention triggered by Binoc-
ulars (up to 20, 000 cycles on a Skylake-X processor, Section A.4).

Source of the Contention. We first confirm that the contention originates from the page walk trig-
gered by TLB misses. To this end, we monitor various TLB- and page-walker-related performance
counter sub-events (Table A.2) during an experiment similar to the one in Figure A.2. In the exper-
iment, one hyperthread performs a TLB-missing page access while the sibling hyperthread keeps
writing to an address that is, (or is not), 4K-aliasing with one of the page walker loads. Before the
measurement, we first warm up the page by accessing it multiple times so that its data is cached;
then, we invalidate its translation from all the TLB levels.

Table A.2: List of performance counter events.

Parent Event Sub-event Description
DTLB_LOAD_MISSES MISS_CAUSES_A_WALK Number of page walks (including incom-

plete walks)
DTLB_LOAD_MISSES WALK_COMPLETED Number of completed page walks
DTLB_LOAD_MISSES WALK_DURATION† Count of core clock cycles when the page

walker is servicing page walks
PAGE_WALKER_LOADS DTLB_L1* Number of page walker loads that hit in

L1D+Fill Buffer
PAGE_WALKER_LOADS DTLB_L2* Number of page walker loads that hit in L2
PAGE_WALKER_LOADS DTLB_L3* Number of page walker loads that hit in L3
PAGE_WALKER_LOADS DTLB_MEMORY* Number of page walker loads that read

from main memory
MEM_LOAD_RETIRED L1_HIT Number of load instructions that hit in L1D

(excluding page walker loads)
n/a Unhalted Core Cycles† Count of core clock cycleswhen the core is

running
* Although these sub-events are only documented for Haswell-EP and Broadwell-EP, we find that they still
exist and are functional on newer microarchitectures like Skylake-X and Cascade Lake-X.

† These sub-events count core clock cycles, which are subject to turbo-boost. The rest of the appendix uses
reference clock cycles, which are not.

Table A.3 shows performance counter values collected on an Intel Skylake-X for both the 4K-
aliasing and no-aliasing cases. If the store is not aliasing with the page walker load, the page
walker starts and completes one page walk to handle the TLB miss (MISS_CAUSES_A_WALK and
WALK_COMPLETED events, respectively), which takes 42 core clock cycles (WALK_DURATION), and
all its page walker loads plus the data access hit in the L1D cache. It takes 180 core clock cycles
in total to complete the page walk, the data access, and then stop the performance counters.
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In the 4K-aliasing case, however, the page walker starts two page walks but only finishes one.
Also, the sub-event WALK_DURATION has a value that is close to Unhalted Core Cycles. These
results indicate that the core spends most its cycles servicing the page walk, which takes a long time
to complete. Also, the page walk seems to be aborted and restarted. The counters for page walker
loads all indicate there are no L1D misses, which means that the slow page walk is not caused by
cache-missing loads. These observations confirm that the contention indeed comes from the page
walker. We hypothesize that the contention is so strong that it leads to resource starvation of the
page walker, which triggers a “watchdog” to abort the page walk and restart it with a higher priority
over shared resources.

Table A.3: Performance counter values on a Skylake-X.

Sub-event No Aliasing 4K-Aliasing
MISS_CAUSES_A_WALK 1 2
WALK_COMPLETED 1 1
WALK_DURATION (core clock cycles) 42 16452∗
DTLB_L1 4 4
DTLB_L2 0 0
DTLB_L3 0 0
DTLB_MEMORY 0 0
L1_HIT 1 1
Unhalted Core Cycles (core clock cycles) 180 16584∗
∗ These core clock cycles correspond to≈ 20, 000 reference clock cycles.

Cause of Starvation. To validate our starvation hypothesis, we rely on Intel’s patents on virtual
memory translation. According to one of Intel’s patents, the page walker issues “stuffed” loads that
bypass the RS and the ROB [281]. This mechanism is presented as an optimization to avoid any
scheduling latency that the RS or the ROB may cause.
After the stuffed load is dispatched by the page walker, it is handled by the memory-order buffer

(MOB). TheMOB checks for potential conflicts with pending stores—-i.e., whether a store may be
writing to the address read by the stuffed load. If a potential conflict is found, the pagewalker aborts
the walk and retries when the conflict is resolved. Although this might sound like the root cause of
the contention, our further experimentation finds that only stores from the same thread can cause
conflicts, as the MOB is not shared by the two hyperthreads, which disproves this explanation.
If the MOB finds no conflicts, the stuffed load is issued to the L1D cache. In this step, the L1D

cache may “squash” the stuffed load under certain circumstances. If the squash happens, the page
walker will re-dispatch the stuffed load as soon as possible, and the re-dispatched stuffed load may
get squashed by the L1D cache again. This behavior can starve the stuffed load indefinitely. As
will be discussed later, we indeed find a performance counter sub-event that suggests that the L1D
cache receives thousands of read requests from the stuffed load during a stalled page walk.
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Magnitude of Starvation. Given that the L1D cache rejects data accesses for various reasons
(Section A.2.2), why can Binoculars stall a page walk for up to 20, 000 cycles while attacks like
CacheBleed and MemJam only delay a data access for a few cycles? We hypothesize the answer
is related to instruction scheduling differences.
In CacheBleed andMemJam, the conflicts are between explicit data loads and stores. Data loads

and stores are processed by the ROB and the RS, and are scheduled by the sameOut-of-Order (OoO)
engine of the physical core. The OoO engine can therefore detect andmediate between the conflicts
after a few failed L1D accesses. In Binoculars, however, the conflicts are between implicit stuffed
page walker loads and explicit data stores. Because stuffed loads are managed outside of the RS
and the ROB, we hypothesize that the OoO engine cannot detect such conflicts. Consequently, the
OoO engine simply allows the explicit data stores from the other hyperthread to run “at full speed”,
without realizing that one hyperthread is trying to perform a page walk and failing, as its stuffed
loads are getting squashed. The page walker thus suffers from resource starvation and eventually
triggers a mechanism that aborts and restarts the page walk (presumably with a higher priority).

Cause of L1D Squashes. We find that both set conflicts and false dependences can cause stuffed
loads to be squashed by the L1D cache, depending on the writing thread’s behavior. Our analysis
here is based on identifying undocumented performance counters for these events.
To identify relevant counters, we perform a brute force search over all possible counter sub-

events, searching for the ones that are highly correlated with the access latency of TLB-missing
loads. We perform the search by trying every combination of the two 1-byte-long fields, EventSel
and UMask, which determine the sub-event in the performance counter configurationmodel-specific
registers [130]. Our search finds two interesting undocumented sub-events: (1) EventSel=0x51,
UMask=0x20 and (2) EventSel=0xbf, UMask=0x01. Based on the EventSels of these two sub-
events and our reverse engineering, the first sub-event likely counts the number of L1D read re-
quests, including both successful and squashed requests. The second sub-event likely counts the
number of failed L1D read requests due to false dependences (Section A.2.2). In the rest of our dis-
cussion, we will refer to these two sub-events as L1D.READ_REQS and L1D_BLOCKS.FALSE_DEPS
respectively. We also find that the L1D.READ_REQS sub-event is present only on Haswell-EP but
not on newer generations. Therefore, we will focus on results on Haswell-EP for the rest of the
discussion.
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We perform three experiments to understand whether Binoculars L1D squashes are due to 4K-
aliasing or L1D set conflicts. The experiments monitor these undocumented sub-events as one
hyperthread performs a TLB-missing memory access, which triggers a page walk that reads from
𝑅𝐴4, 𝑅𝐴3, 𝑅𝐴2, and 𝑅𝐴1, while its sibling hyperthread keeps writing to an address 𝑊𝐴. The
experiments differ in the bits shared by 𝑅𝐴 and 𝑊𝐴, and in the frequency of writing to 𝑊𝐴: (1)
BINOCULARS-4K: 𝑅𝐴1 and𝑊𝐴 share bits 11-3 (i.e., 4K-aliasing); (2) BINOCULARS-SAMESET: 𝑅𝐴1
and𝑊𝐴 share bits 11-6 but differ in bits 5-3 (i.e., they are mapped to the same L1D cache set); (3)
BINOCULARS-4K-LOWFREQ: 𝑅𝐴1 and𝑊𝐴 share bits 11-3, but the writer thread has a reduced write
frequency, as it executes arithmetic instructions between writes. We ensure that the page walker
loads, the data load, and the stores only access up to two unique cache lines in an L1D set, i.e.,
fewer than the associativity of the L1D cache. We repeat each experiment 1000 times.
Figure A.11 shows the results on a Haswell-EP in reference clock cycles (the maximum stall on a

Haswell-EP is around 16, 000 cycles). The red dashed lines are fitted linear regression lines. In the
BINOCULARS-4K experiment (Figure A.11a), the access latency is strongly correlated to the number
of L1D read requests, which confirms that the stuffed page walker loads are repeatedly squashed
by the L1D cache and re-dispatched by the page walker. From the fitted line, on average, it takes
9 cycles to squash and retry a stuffed load. However, looking at the right plot of Figure A.11a, the
correlation between the access latency and L1D_BLOCKS.FALSE_DEPS is very low, which suggests
false dependences are not the main cause of L1D squashes in this experiment.
The BINOCULARS-SAMESET experiment (Figure A.11b) still shows many high-latency events that

are correlated to L1D.READ_REQS. Compared to BINOCULARS-4K, however, it has significantly
fewer events that reach the maximum latency (131/1000 events in BINOCULARS-SAMESET versus
847/1000 events in BINOCULARS-4K). Also as expected, L1D_BLOCKS.FALSE_DEPS is always 0
because the page walker load is not 4K-aliasing with stores. This experiment shows that without
false dependences, contention and even starvation can still occur as long as the 𝑅𝐴1 and the 𝑊𝐴
are mapped to the same L1D cache set (i.e., they suffer set conflicts). However, they occur less
frequently than they would in BINOCULARS-4K. Recall that we see a similar behavior in Figure A.5.
Finally, in the BINOCULARS-4K-LOWFREQ experiment (Figure A.11c), the latency is still strongly

correlated to L1D.READ_REQS and it can reach themaximum 16, 000-cycle latency. But now it takes
10 cycles to squash and retry. Also, the latency is strongly correlated to L1D_BLOCKS.FALSE_DEPS,
which means that false dependences in the L1D cache become the main reason of L1D squashes
when the writer thread has a reduced frequency.
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Figure A.11: Scatter plot between the access latency and the two undocumented sub-events. All
plots share the same Y axes.

The results of the three experiments lead us to conclude that both set conflicts and false depen-
dences can cause stuffed loads to be squashed by the L1D cache, depending on the writer thread’s
behavior. We believe that set conflicts only happen in an early stage of a read access, while false
dependences occur in a later stage. This explains the one-cycle difference in the squash-and-retry
latency. We believe that set conflicts require stricter timing requirements to trigger (e.g., that read
and write requests arrive at the same cycle) compared to false dependences. Finally, we believe
that set conflicts (when they occur) dominate false dependences—i.e., when a set conflict occurs,
a false dependence will not happen.
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The above explain the results we see. When stores are frequent (Figures A.11a and A.11b),
set conflicts are more likely to occur. This explains Figure A.11a (set conflicts occur frequently
and dominate false dependences when they do) and Figure A.11b (in which set conflicts occur
frequently and false dependences are impossible). This also explains that in Figure A.11c set con-
flicts are less likely and thus false dependences dominate. Finally, this explains why starvation
occurs less frequently in BINOCULARS-SAMESET than in BINOCULARS-4K: since a read request can
“slip through” set conflicts due to the strict timing requirements, high latency is hard to build up in
BINOCULARS-SAMESET. In BINOCULARS-4K, the “slipped-through” request will likely be squashed
due to a false dependence in the next cycle, which makes the starvation more likely to happen.

A.6 BINOCULARS COVERT CHANNEL

A covert channel is a communication channel that allows two cooperating parties to bypass
system policies to communicate with each other. Most covert channels are synchronous, where the
transmission process is divided into time epochs for synchronization. In every epoch, the sender
encodes one or several bits of information by changing microarchitectural states, while the receiver
decodes the information by observing the changes. Depending on themechanism used by the covert
channel, in every epoch, after the receiver decodes the transmission, it may need to precondition
the channel for the next epoch [282]. To keep the sender and the receiver well-synchronized, an
epoch has to be long enough to cover the encoding and decoding operations, and the potential
preconditioning operations.
A robust metric to measure a covert channel’s transmission capability (i.e., its raw throughput

and bit-error rate) is the channel capacity [283]. This metric measures the highest rate of reliable
information transmission that a communication channel supports. It is computed by 𝑟×(1−𝐻(𝑝)),
where 𝑟 is the raw throughput of the channel, 𝑝 is the probability of a bit error, and 𝐻 is the binary
entropy function. Using this formula, we can see that a high-capacity covert channel requires a
high raw throughput (which is determined by the length of an epoch and the number of bits it can
transmit per epoch) and a low bit-error rate (which is determined by the noise in the channel). This
metric is also used in some prior work [14, 284, 285].
A straw man Binoculars covert channel works as follows. Before the transmission, sender and

receiver agree on a page offset. To send a bit 1, the sender keeps writing to the agreed offset until
the end of the epoch. To send a bit 0, the sender does nothing and waits for the next epoch. To
decode the information, the receiver issues and times a TLB-missing memory access to a target
page, whose page walk includes a load that 4K-aliases with the sender write.
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If the receiver measures a high access latency, the sender is sending a bit 1; otherwise, it is sending
a bit 0. After that, to precondition the channel, the receiver accesses a TLB eviction set to evict the
target page from the TLB.

Table A.4: Comparison of covert channels with average capacity higher than 100 KB/s.

Attack Channel
Capacity

Cross
Address Space?

Cross
Core?

Streamline [286] 1733 KB/s No Yes
Lord of the Ring(s) [285] 518 KB/s Yes Yes
Take-a-Way [287] 505 KB/s Yes No
Flush+Flush [7] 463 KB/s No Yes
L1 Prime+Probe [2] 400 KB/s Yes No
Flush+Reload [6, 7] 298 KB/s No Yes
Binoculars (Cascade Lake-X) 1116 KB/s Yes No
Binoculars (Skylake-X) 622 KB/s Yes No
Binoculars (Haswell-EP) 177 KB/s Yes No

Unfortunately, this straw man scheme does not achieve a high channel capacity. Since the page
walker loads can be stalled for up to 20, 000 cycles (Section A.4), an epoch has to be longer than
that, which drastically limits the channel capacity. Fortunately, in practice, such large stall times
are unnecessary to build a low error-rate covert channel. Therefore, we carefully tune the number
of stores that are executed by the sender. We want to make sure that these stores can create reliably-
high timing differences on the receiver side while keeping the epochs short.
To further improve the channel capacity, on the receiver side, we build a large TLB eviction

set using methods similar to ones in [8, 288]. At every epoch, the receiver chooses the target page
from that set. Moreover, the chosen target page is different from the target page used in the previous
epoch. With this design, we can ensure that the read access to the target page not only decodes the
information, but also evicts the translation of the page that will be used as the target in the next
epoch. This design eliminates the need of preconditioning the channel through explicit eviction of
TLB entries. Hence, we can support an even shorter epoch.
Finally, we also make sure that all the pages in the TLB eviction set are mapped to the same

physical page. As a result, accessing them one after another does not evict their data from the
caches, which removes any noise due to cache misses.
We evaluate the average capacity of the Binoculars covert channel on Intel Haswell-EP, Skylake-

X, and Cascade Lake-X platforms. In each platform, we run the sender and the receiver for 100
times to transmit a 1MB-long randomly-generated message.
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Table A.4 lists the channel capacity of Binoculars on each platform, as well as the capacities of
prior covert channels. From the table, we see that on a Haswell-EP, Binoculars attains a moderate
channel capacity of 177 KB/s with a 1.2% bit error rate. On a Skylake-X, the channel capacity
increases to 622KB/s and the bit error rate decreases to 0.9%. Finally, on a Cascade Lake-X, which
is one of the latest Intel server microarchitectures, the capacity reaches 1116 KB/s with a low bit
error rate of 0.6%.
The main reason for the large channel capacity variations across different platforms is the pro-

cessor performance. In newer generations, processors can execute the same number of stores in a
shorter period of time, and these stores can also cause more contention effects. As a result, a newer
processor requires fewer stores to cause enough contention and a shorter epoch to execute them.
For example, on a Haswell-EP, we need to execute 380 stores on the sender side every epoch. On
a Cascade Lake-X, the number is reduced to only 80 stores, which only require a 420-cycle epoch.
Table A.4 also lists the characteristics of existing covert channels with a channel capacity greater

than 100KB/s. Among all these channels, Binoculars has the second highest channel capacity1 (on
Skylake-X and Cascade Lake-X), and is only behind Streamline [286]. Although Streamline has
a higher channel capacity and supports cross-core communication, Binoculars does not require
shared memory thus works across address spaces.

A.7 ATTACKING MONTGOMERY LADDER AND ECDSA

We use Binoculars to obtain the private key used by OpenSSL’s ECDSA implementation. Our
attack targets the Montgomery ladder, a widely used optimization for computing scalar multipli-
cation on elliptic curves [187]. OpenSSL’s ECDSA implementation uses the Montgomery ladder
to calculate the point 𝑘 × 𝐺 during signing, where the scalar 𝑘 is a nonce (i.e., an ephemeral key).
Our goal is to learn the nonce 𝑘, which together with the signature can be used to derive the private
key used for signing [186, 188].
Figure A.12 shows the Montgomery ladder implementation used in OpenSSL 1.0.1e. The code

iterates over the bits of 𝑘. In each iteration, it performs an elliptic curve point addition and doubling
by calling the functions gf2m_Madd and gf2m_Mdouble, respectively. The current bit, 𝑘𝑖, deter-
mines the big number variables written to in each step. If 𝑘𝑖 = 1, (𝑥1, 𝑧1) is added to and (𝑥2, 𝑧2) is
doubled; if 𝑘𝑖 = 0, the order is reversed. In the following, we denote function calls to gf2m_Madd
and gf2m_Mdouble under the 𝑘𝑖 = 1 direction as Madd1 (Line 6) and Mdouble1 (Line 8), and the
calls under the 𝑘𝑖 = 0 direction as Madd0 (Line 10) and Mdouble0 (Line 11).

1Parallel to our work, TLB;DR [288] built a more performant covert channel with an average channel capacity of
1375 KB/s.

2The code is from function ec_GF2m_montgomery_point_multiply at crypto/ec/ec2_mult.c:268 [163].
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1 for (; i >= 0; i--) {
2 word = scalar->d[i];
3 while (mask) {
4 if (word & mask) { // checks ki
5 // compute (x1,z1)=(x1/z1)+(x2/z2)
6 if (!gf2m_Madd(group,&point->X,x1,z1,x2,z2,ctx)) goto err;
7 // compute (x2,z2)=2*(x2/z2)
8 if (!gf2m_Mdouble(group, x2, z2, ctx)) goto err;
9 } else {
10 if (!gf2m_Madd(group,&point->X,x2,z2,x1,z1,ctx)) goto err;
11 if (!gf2m_Mdouble(group, x1, z1, ctx)) goto err;
12 }
13 mask >>= 1;
14 }
15 mask = BN_TBIT;
16 }

Figure A.12: Montgomery ladder implementation used in OpenSSL 1.0.1e2.

While this implementation is data-oblivious to the sequence of operations and end-to-end tim-
ing, it nevertheless has a secret-dependent order of stores to (𝑥1, 𝑧1) and (𝑥2, 𝑧2). Since stores to
these two pairs of variables have different page offsets, Binoculars can identify the store order by
monitoring stores to these offsets, and thereby recover the 𝑘𝑖 values.
Challenge. The nonce 𝑘 in ECDSA changes at every run and never repeats. An attacker only has
one chance to capture a 𝑘 and cannot rely on repeated runs to de-noise the channel. As a result,
the attacker needs a side channel with an extremely high signal-to-noise ratio to exfiltrate 𝑘 with a
single victim run. There exist partial key recovery techniques for ECDSA [188, 190, 191, 192] that
allow an attacker to reconstruct the private key from multiple signatures and part of corresponding
𝑘s. However, most of them assume that the known parts of 𝑘s are error free [190], or at least that
they have a low bit-error rate (e.g., less than 2% [191, 192]).

A.7.1 Attack Method

We assume the attacker can obtain a signature from the victim (e.g., bymaking a network request)
and use Binoculars to monitor the victim’s signing execution. The attacker’s process does not need
to share any physical memory with the victim.
Our attack infers the value of 𝑘𝑖 using the store→load channel to monitor the order of stores

to (𝑥1, 𝑧1) and (𝑥2, 𝑧2). To avoid monitoring four variables, we only monitor stores to a single
variable (e.g., 𝑥2). We infer the value of 𝑘𝑖 based on whether the stores happen in the first half of
a Montgomery ladder iteration (in which Madd0 executes) or in the second half of an iteration (in
which Mdouble1 executes).
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Figure A.13: Page offsets of stores in Madd0, Mdouble0, Madd1, and Mdouble1. Red circles high-
light stores to variable 𝑥2. The traces are collected with Intel Pin [289] on a Skylake-X.

Crucially, we design a realistic end-to-end attack that does not assume synchronization between
victim and attacker, such as knowingwhenMontgomery ladder iterations begin and end. Our attack
method contains the following three steps:

Step 1: Identify Target Store Page Offsets. Finding store page offsets to monitor can be done
offline. Page offsets depend only on memory allocation details, which are fixed for a given envi-
ronment. (In particular, they are independent of ASLR, which only randomizes high-order bits of
addresses.) This means that running the same OpenSSL as the victim in the same environment is
sufficient for the attacker to find suitable offsets for using in a later online attack.
To minimize noise, we prefer offsets that are exclusively used by one of the four variables (e.g.,

𝑥2). Figure A.13 shows traces of page offset stored to by Madd0, Mdouble0, Madd1, and Mdouble1,
obtained using Intel’s Pin tool [289]. The X axis is the order of stores inside the function and the
Y axis is the page offset of each store. Stores to 𝑥2 are highlighted with red circles. Since 𝑥2 is a
big number that occupies multiple double words, offsets of stores to 𝑥2 form a continuous descent
“slope” with a step of 8 bytes in the figure, instead of a single point. We find that 𝑥2’s offsets are
good candidates for low-noise monitoring, as only Madd0 and Mdouble1 store to these offsets, and
only when writing to 𝑥2.
Step 2: Monitor Victim Stores. The attacker process is co-located on the same physical core as
the victim, but on a sibling hyperthread. While the victim is signing, the attacker process keeps
recording the latency of TLB-missing loads that monitor stores to the chosen page offsets, as well
as the timestamp of each measurement. The latency trace is then saved for the next step.
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Figure A.13 shows that for a given offset of 𝑥2, only a few stores are executed in a short period
during signing. To obtain a detectable signal in the store→load channel from these stores, we time
four dependent TLB-missing loads instead of one. Since a single TLB-missing load can monitor
two unique offsets (Section A.4.1), these four loads can monitor eight neighboring offsets of 𝑥2 to
increase the chance of contention. Also, because these four loads are dependent, their contention
effects are built up and observable.
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Figure A.14: A snippet of measured raw latencies. Grey vertical dashed lines indicate start of
Montgomery ladder iterations. Grey vertical doted lines are the halves of iterations. Red crosses are
the ground truth of 𝑘. Timestamps are relative to the first Montgomery ladder iteration. Measured
on a Skylake-X.

Step 3: Process Signal. To recover the 𝑘𝑖 values from the latency trace collected in step 2, we
need to (1) identify when the victim stores to 𝑥2; and (2) find boundaries of Montgomery ladder
iterations, so that we can know whether the stores are performed in the first or second half of an
iteration.
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Figure A.15: Montgomery ladder iteration boundaries predicted by the classifier on the trace in
Figure A.14. Timestamps are relative to the first Montgomery ladder iteration.
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Figure A.14 shows a snippet of a latency trace collected on a Skylake-X, while the attacker
monitors stores to 𝑥2. We thus expect to see latency increases when the victim executes Madd0 or
Mdouble1. Red crosses show the 𝑘𝑖 values. Iteration boundaries and halves are marked by vertical
grey dashed lines and thin dotted lines, respectively. The lines are plotted by instrumenting the
victim, but in a real attack, they must be recovered by the attacker from the trace. On average, the
probing latency is around 300 cycles on the test machine.
Using the vertical lines as references, we see that when 𝑘𝑖 is 0, there are two high latencies events

in the first half of the Montgomery ladder iteration (bits 𝑘175, 𝑘177, and 𝑘178). And when 𝑘𝑖 is 1,
high latency events occur in the second half of an iteration (bits 𝑘172, 𝑘174, and 𝑘176).
Not all contention effects are obvious, however (e.g., bit 𝑘173). We therefore use a supervised

machine learning model, random forest classifier [195, 196], to predict iteration boundaries and 𝑘𝑖
values from the latency trace. The following details how the model is used.

Preprocess. Because the attacker process keeps measuring latencies without any synchronization,
the trace forms an unevenly spaced time series. We transfer the data into an equally spaced time
series by resampling the raw data at a fixed period with linear interpolation. Since most machine
learning models work best when the data under classification roughly follows a standard normal
distribution, we normalize the resampled latencies by subtracting the mean and then dividing by
the standard deviation.

Predict iteration boundaries. To recover Montgomery ladder iteration boundaries from the la-
tency trace, we use a binary random forest classifier. Our classifier takes as input a vector of 160
normalized latencies and predicts whether the center of the vector is an iteration boundary.
Figure A.15 shows the classifier’s outputs for the trace snippet in Figure A.14. The blue line is

the classifier output on each timestamp and the grey vertical dashed lines are the ground truth of
iteration boundaries. While the classifier manages to recover most boundaries, it sometimes misses
a boundary (e.g., between 𝑘173 and 𝑘174). We overcome this problem by, ironically, exploiting the
Montgomery ladder’s constant-time property. Because it executes the same sequence of operations
regardless of 𝑘𝑖, the iteration length is relatively constant. We can therefore estimate the average
iteration period from the predictions and use it to fix missing boundaries and remove false positives.

Predict 𝑘𝑖. Finally, we train another random forest classifier that takes as input a vector of normal-
ized latencies from an iteration 𝑖, and predicts the value of 𝑘𝑖. For each prediction, the classifier
also outputs a confidence score.
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Figure A.16: Violin plots of each approach’s accuracy distribution on a Skylake-X. Each distribu-
tion contains 100 predictions. BLANK with predicted boundaries are omitted since the boundary
predictor fails to output any meaningful data for it. All plots except BLANK share the same Y axis
range starting from 90%.

A.7.2 Results

Setup. We evaluate our attack method on a Skylake-X and a Cascade Lake-X with OpenSSL
1.0.1e on Ubuntu 20.04 LTS (5.4.0-105-generic). We use OpenSSL 1.0.1e strictly as a demon-
stration benchmark; after version 1.0.1e, OpenSSL switched to an invulnerable branchless Mont-
gomery ladder implementation. We configure cores to run in performance mode without fixing
their frequency. Cores for experiments are isolated to minimize context switches. We use the de-
fault compilation flags to compile OpenSSL. The curve that we are targeting is sect571r1, which
uses a 571-bit nonce. We use the binary random forest classifier machine learning model from
scikit-learn 1.0.2 [195] for signal processing.
We evaluate the attack’s end-to-end accuracy with three other approaches for monitoring victim

stores (Step 2) besides Binoculars, while keeping the rest of the steps same: (1) BLANK: the attack
process only measures time. This approach serves as a sanity check to show that the signal we
observe is not caused by any resource contention on reading the timestamp. (2) MEMJAM-PARA:
this approach relies on false dependence in the L1D cache (Section A.2.2) that is described in
MemJam [9]. Similar to the setup in MemJam, we measure the latency of eight parallel loads that
are 4K-aliasing with a target store offset. (3) MEMJAM-DEP: this approach replaces eight parallel
loads in MEMJAM-PARA with four dependent loads to enhance the contention. (4) BINOCULARS (this
work): this approach relies on the store→load channel.
For each approach, we collect 100 latency traces to train the first random forest classifier that

predicts Montgomery ladder iteration boundaries. This step takes about 1 minute to collect and
process the traces (about 500𝑘 training samples), and 10 minutes to train on a 16-core machine.
Then, we use another 30 traces to train the second random forest classifier that predicts 𝑘𝑖. This
step takes about 2 minutes to collect, process, and train on the same machine (about 17𝑘 training
samples).
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Finally, we evaluate the end-to-end accuracy of each method on another 100 traces and discuss the
security implications (i.e., nonce recovery). Note that we do not include results on a Haswell-EP,
because none of these four approaches can achieve good accuracy with a single victim run on it,
mainly due to its low performance and thus weak contention effects.
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Figure A.17: Violin plots of each approach’s accuracy distribution on a Cascade Lake-X.

Accuracy. Figures A.16 and A.17 show the accuracy distribution of each approach on different
CPU platforms. For each approach, we show the results with iteration boundaries predicted by
the boundary classifier and with oracle boundaries. The exception is BLANK, in which we only
show results with oracle boundaries since the boundary classifier cannot output any meaningful
prediction for its traces. For each distribution, the area represents the density of samples at a given
accuracy. A wider area means the corresponding accuracy is more likely to occur. The thick short
black bar represents the first to third quartile range. The thin long black bar represents the lower and
upper bounds after filtering outliers with the quartile range. The white dot represents the median
of the distribution.
BINOCULARS has the highest accuracies on both CPU platforms. On average, its accuracies are

98.5±0.3% on a Skylake-X and 98.4±0.3% on a Cascade Lake-X (𝑁 = 100, 𝑃 = 0.95, same𝑁 and
𝑃 value below), or with oracle boundaries, 99.1±0.1% on a Skylake-X and 98.7±0.8% on a Cascade
Lake-X. Using oracle boundaries, sometimes BINOCULARS can even recover the full nonce without
any error. Compared to BINOCULARS, other approaches have lower accuracy and higher deviation.
MEMJAM-PARA, on average, can achieve 96.0±0.6% on a Skylake-X and 94.1±0.5% on a Cascade
Lake-X. On average, MEMJAM-DEP’s accuracies are 94.9±0.7% on a Skylake-X and 93.8±0.6% on
a Cascade Lake-X. BLANK achieves accuracies that are only slightly better than random guessing
(i.e., 50%), indicating—as expected—that just reading the timestamp cannot reveal 𝑘𝑖.
Nonce Recovery. To completely recover the full 571-bit-long nonce 𝑘, we need to find and correct
erroneous bits in the predictions through brute forcing. Since we do not know how many bits are
incorrect and where those bits are, we have to first guess the number of erroneous bits 𝑛𝑒, starting
from 1, then try to flip all 𝐶𝑛𝑒

571 combinations. If no correct solutions are found, we will increment
𝑛𝑒 and repeat the process.
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To speed up the brute force search, we improve the method based on an observation that most
erroneous bits have low confidence scores. In the improved method, we first sort all the predicted
bits by their confidence scores in an ascending order. Then, we pick the top 𝑁𝐿 low-confident bits
and try to flip all 𝐶𝑛𝑒

𝑁𝐿 combinations for a given 𝑛𝑒. Since 𝑁𝐿 can be much smaller than the bit-
length of 𝑘 (i.e., 571), the search space is significantly reduced. Note that if the 𝑁𝐿 low-confident
bits fail to cover some erroneous bits, the brute force will fail. In that case, we will increase 𝑁𝐿
and retry.
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Figure A.18: Required log2 brute force attempts to recover the full nonce 𝑘 with the improved
method on Skylake-X (Based on 𝑘𝑖 predictions with predicted boundaries).

Figures A.18 and A.19 show histograms of log2 brute force attempts with the improved method.
These histograms are based on 𝑘𝑖 predictions with predicted Montgomery ladder iteration bound-
aries. On a Skylake-X (Figure A.18), BINOCULARS requires a median of 223.4 brute force attempts
to recover 𝑘, which is feasible. If we assume an acceptable brute force attempts threshold at 240,
BINOCULARS can succeed on 78.5% of traces. However, MEMJAM-DEP and MEMJAM-PARA require
many more brute force attempts. Their median attempts are 2101.6 and 282.0 respectively. With the
same brute force threshold, they can only recover 1.0% and 3.1% of traces.
On a Cascade Lake-X (Figure A.19), every approach requires slightly more brute force attempts.

From left to right, BINOCULARS requires 224.7 median brute force attempts, and recovers 𝑘 on 77.9%
of traces with a brute force threshold of 240. While MEMJAM-DEP and MEMJAM-PARA require 2130.8
and 2132.5 median brute force attempts. Under the same brute force threshold, they can only recover
1.0% and 0.0% of traces.
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Figure A.19: Required log2 brute force attempts to recover the full nonce 𝑘 with the improved
method on Cascade Lake-X (Based on 𝑘𝑖 predictions with predicted boundaries).
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A.8 COMPROMISING KASLR

Linux uses kernel address space layout randomization (KASLR) to increase the difficulty of
exploiting memory safety vulnerabilities. Linux randomizes the base addresses of several kernel
memory regions at boot time. Since the possible kernel’s address range is 1GB (30 bits) and base
addresses are aligned to 2MB boundaries (21 bits), Linux’s KASLR has 9 bits of entropy (512
choices) [290]. The address bits randomized are bits 29-21, i.e., the 𝑃𝐿2 index.

Attack Method. Using the load→store channel, an attacker can recover the full virtual page num-
ber (VPN) of a TLB-missing victim (kernel) memory load. Assuming the offset of the accessed
page within its kernel segment is known, the base address of the segment can be derived, breaking
KASLR.
We implement this idea by attacking a system call that accesses a global variable, whose offset

within the kernel image is known for a given kernel build. We choose the SYS_time system call
(similar to prior work [287]) which accesses the global variable tk_core. The attack is similar to
the setup in Figure A.8, with the difference that the attacker measures the end-to-end execution time
of the victim. The attacker runs two hyperthreads on the same physical core. The first hyperthread
flushes the TLBs and measures the latency of calling SYS_time, while the second hyperthread
keeps writing to each possible 𝑃𝐿 offset. Because the TLBs are flushed, the system call’s read of
tk_corewill miss in TLBs and trigger a page walk. Consequently, the attacker will observe system
call latency spikes at offsets that are 4K-aliasing with any PL index of tk_core. To minimize noise
caused by irrelevant TLB-missing loads, the first thread makes an invalid system call to warm up
the system call handler before calling SYS_time.
Binoculars is fundamentally different from most prior KASLR attacks [23, 290, 291, 292, 293,

294] which rely on monitoring microarchitectural side effects of accessing a mapped or unmapped
address. Such attacks can be defeated by software mitigations like FLARE [290], which creates
fake mappings for all possible kernel addresses, or kernel page-table isolation (KPTI), which un-
maps most kernel pages in user space [295]. In contrast, Binoculars directly observes the kernel’s
TLB-missed memory loads, which allows the attacker to break KASLR even if KPTI or FLARE
is deployed. Compared to prior work that also monitors victim’s memory accesses [287], Binocu-
lars can completely break KASLR thanks to its wide address bits coverage, in contrast to reducing
entropy in [287].

Results. We use the same hardware set as in Section A.4, running Ubuntu 20.04 LTS (5.4.0-105-
generic). On Haswell-EP and Skylake-X platforms, which are vulnerable to Meltdown, KPTI is
enabled. We rely on /proc/kallsyms to collect the ground truth of the global variable tk_core’s
address.
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Figure A.20: Average latency of calling SYS_time when varying store offsets on a Skylake-X.

FigureA.20 shows the average latency of calling SYS_time, measured at each offset on a Skylake-
X. The global variable tk_core is located at 0xffffffffa19f4f40 in this boot, which corre-
sponds to indexes to 𝑃𝐿4, 𝑃𝐿3, 𝑃𝐿2, and 𝑃𝐿1 equal to 0x1ff, 0x1fe, 0x10c, and 0x1f4, respec-
tively, which are marked in the figure. While the latencies are huge at these indexes, we do not see
peaks as sharp as the ones in Figure A.8 due to TLB-missing accesses that are not to tk_core. We
therefore run a peak detection algorithm.
To identify which peak corresponds to tk_core’s 𝑃𝐿2 index, we need to discard the 𝑃𝐿4, 𝑃𝐿3,

and 𝑃𝐿1 indexes. We use the fact that the 𝑃𝐿4 and 𝑃𝐿3 indexes are the same constants in any Linux
kernel image base address. Moreover, we can learn tk_core’s 𝑃𝐿1 index from its offset in the
kernel image, which is known for a given kernel build (and readable in the image’s symbol table).
Tomeasure the accuracy of identifying the 𝑃𝐿2 index, we reboot the system 10 times, and recover

the index 100 times per boot (1000 recoveries in total). We achieve accuracies of 100.0%, 98.7%,
and 92.6% on the Skylake-X, Haswell-EP, and Cascade Lake-X, respectively. These accuracies,
however, are of a single attacker run. They can be trivially improved to 100% on all three platforms
by repeating the runs and picking the most frequent 𝑃𝐿2 index guess.

A.9 POTENTIAL MITIGATIONS

The root cause of the Binoculars attack is the starvation of hardware page walker loads by con-
current stores due to false dependence and/or set conflicts in the L1D cache. A complete fix of
Binoculars thus requires hardware-level changes.
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Software-wise, two mitigations can be applied. A system can disable hyperthreading, or only
allowmutally trusted programs to share a physical core (e.g., core scheduling [100]). However, this
mitigation can under-utilize hardware resources and lead to system performance degradation [296].
Alternatively, potential victims can be rewrittenwith data-oblivious programming practices [41, 42,
43], so that they do not make secret-dependent memory accesses. But while data-oblivious code is
invulnerable to Binoculars and many other side channels, it usually requires a non-trivial amount
of effort to rewrite and verify the program, and incurs significant execution overhead.

A.10 RELATED WORK

Attacks on Montgomery ladder. There have been several attacks on Montgomery ladder. Yarom
et al. [189] extend Flush+Reload [6] to attack the same vulnerable implementation in Figure A.12.
Compared to Binoculars, their attack requires the attacker to share memory with the victim, and
has lower average accuracy (95.7%).
Brumley et al. [297] attack a different part of the OpenSSL implementation to recover the loga-

rithm of 𝑘, which is then used in a lattice attack to recover the private key. Unlike Binoculars, this
attack requires thousands of signatures and its success rate is low.

Exploiting page walker loads. Page walker loads go through the cache hierarchy and so can be
observed with cache-based side channels. There have been side-channel attacks exploiting page
walker loads to build stateful-indirect channels [96, 97, 298, 299]. Using these channels, the
attack’s granularity is limited to a cache line (64 bytes), which means that it cannot distinguish ac-
cesses to neighboring pages, whose 8-byte PTEs share the cache line with the target page. Binoc-
ulars is also capable of performing such monitoring with the load→store channel and has a finer
granularity.

A.11 CONCLUSION

In this appendix, we investigated and demonstrated the first stateless-indirect channel by exploit-
ing interactions between in-flight page walk loads on behalf of one thread and stores by another
thread. We introduced a new side-channel attack called Binoculars. Unlike conventional stateless
channels, Binoculars creates significant timing perturbations (e.g., up to 20, 000 cycles)—making
it easy to monitor. We showed that the perturbations are address dependent, and designed two
Binoculars attack primitives to leak a wide range of virtual address bits in victim memory opera-
tions. Using these primitives, we demonstrated end-to-end attacks on real hardware, which include
extracting the nonce 𝑘 in ECDSA with a single victim run, and fully breaking kernel ASLR.
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APPENDIX B: Thwarting Microarchitectural Replay Attacks

B.1 INTRODUCTION

As shown in Chapter 4, a limitation of microarchitecural side channels is that they are often
very noisy. To extract information, the execution of the attacker and the victim processes has to be
carefully orchestrated [1, 2, 6], and often does not work as planned. Hence, the attacker needs to
rely on many executions of the victim code section to obtain valuable information. Further, secrets
in code sections that are executed only once or only a few times are hard to exfiltrate.
Unfortunately, a new type of attack calledMicroarchitectural Replay Attack (MRA) [280] is able

to eliminate the measurement variation in (i.e., to denoise) most microarchitecural side channels.
This is the case even if the victim runs only once. Such capability makes the plethora of existing
side-channel attacks look formidable and suggests the potential for a new wave of powerful side-
channel attacks.
MRAs use the fact that, in out-of-order cores, pipeline squashes due to events such as exceptions,

branch mispredictions, and memory consistency model violations trigger the re-execution of dy-
namic instructions. Hence, in an MRA, the attacker repeatedly squashes one or more instructions
to force the squash and re-execution of a younger victim instruction V many times. This ability
enables the attacker to cleanly observe the side-effects of V.
MRAs are powerful because they exploit a central mechanism in modern processors: out-of-

order execution with in-order retirement. Moreover, MRAs are not limited to transient execution
attacks: the instruction V that is replayed can be a correct instruction that will eventually retire.
Finally, MRAs come in many forms. While the first MRA [280] exposed the side effects of V by
repeatedly causing a page fault on an older instruction, similar results can be attained with other
events that trigger pipeline flushes.
To thwart MRAs, one has to eliminate instruction replay or at least bound the number of replays

that a victim instruction Vmay suffer. The goal is to deny the attacker the opportunity to see many
executions of V.
This appendix presents the first mechanism to thwart MRAs. We call it Jamais Vu. The simple

idea is to record the instructions that are squashed. Then, when any of these instructions is re-
inserted into the Reorder Buffer (ROB), Jamais Vu automatically places a fence before it to prevent
the attacker from squashing the instruction execution again. In reality, pipeline refill after a squash
may not bring in the same instructions that were squashed, or not in the same order. Consequently,
Jamais Vu has to be carefully designed.
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At a high level, there are two main design questions to answer: how to record the squashed
instructions and for how long to keep the record of them. Jamais Vu presents several designs
that give different answers to these questions, effectively providing different trade-offs between
security, execution overhead, and implementation complexity.
Architectural simulations using SPEC17 applications show the effectiveness of the Jamais Vu

designs. One design, called Epoch-Loop-Rem, effectively mitigates MRAs, has an average execu-
tion time overhead of 13.8% in benign executions, and only needs counting Bloom filters associ-
ated with the ROB. An even simpler design, called Clear-on-Retire, has an average execution time
overhead of only 2.9%, although it is less secure.
The contributions of this appendix are as follows:

• Jamais Vu, the first defense mechanism to thwart MRAs. It selectively fences instructions to
prevent replays.
• Several designs of Jamais Vu that provide different tradeoffs between security, execution over-
head, and complexity.
• An evaluation of these designs using simulations.

1 inst_1
2 inst_2
3 ...
4 transmit(x)

(a) Straight-line
code where the
attacker can cause
exceptions.

1 if (cond_1) {...}
2 else {...}
3 if (cond_2) {...}
4 else {...}
5 ...
6 transmit(x)

(b) Sequence of branches
where the attacker can cause
mispredictions.

1 //always false
2 if (i == expr)
3 x = secret;
4 else
5 x = 0;
6 transmit(x);

(c) Condition-dependent
transmitter.

1 //always false
2 if (i == expr)
3 transmit(x);

(d) Transient trans-
mitter.

1 for i in 1..N
2 //always false
3 if (i == expr)
4 x = secret;
5 else
6 x = 0;
7 transmit(x);

(e) Condition-dependent trans-
mitter in a loopwith an iteration-
independent secret.

1 for i in 1..N
2 //always false
3 if (i == expr)
4 transmit(x);

(f) Transient transmitter in
a loop with an iteration-
independent secret.

1 for i in 1..N
2 //always false
3 if (i == expr)
4 transmit(x[i]);

(g) Transient transmitter in a
loop with an iteration-dependent
secret.

Figure B.1: Code snippets where an attacker can use an MRA to denoise the address accessed by
the transmit load.
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B.2 BACKGROUND: MICROARCHITECTURAL REPLAY ATTACKS

A Microarchitectural Replay Attack (MRA) [280] uses one or more instructions to repeatedly
trigger pipeline flushes, therefore forcing the re-execution of a younger instruction Imultiple times.
This capability enables the attacker to observe any side-effects of I multiple times, eliminating the
measurement noise.
Skarlatos et al. [280] introduced MRAs by using a malicious Operating System (OS) to repeat-

edly trigger page faults on a memory access instruction in an SGX environment. Specifically, the
OS picks a memory access instruction called Replay Handle that occurs shortly before a security-
sensitive instruction I. The OS sets up the attack by flushing the TLB entry that stores the virtual-
to-physical translation of the replay handle access, and clearing the Present bit of the corresponding
page table entry. The OS allows the program to resume execution and execute the replay handle. A
TLBmiss occurs, followed by a page walk. The instructions following the replay handle, including
I, execute in the shadow of the page walk, creating side effects: they leave some state in the cache
subsystem or create contention for hardware structures in the core. This allows an attacker thread
running in the system to perform a measurement of the secret data. At the end of the page walk,
the hardware raises a page fault exception and squashes the instructions in the pipeline. The OS
is then invoked to handle the page fault, but chooses to keep the Present bit cleared. The program
then resumes and re-executes the replay handle, creating a TLB miss and page walk again. The
instructions following the replay handle, including I, execute again until a pipeline flush occurs.
This process is repeated as many times as desired until the attacker extracts the secret information.
MRAs are more general than the specific instantiation prototyped by Skarlatos et al. [280]. For

example, there are multiple events that cause a pipeline flush, such as various exceptions, branch
mispredictions, memory consistency model violations, and interrupts. Moreover, to trigger the
repeated pipeline flushes, one does not need a privileged process. For example, it can be shown
that memory consistency model violations triggered by a non-privileged process can also create
MRAs [249].
In this appendix, we refer to the instruction that causes the pipeline flush as the Squashing (S)

instruction; we refer to the younger instructions in the ROB that the Squashing one squashes as the
Victims (V). The type of Victim instruction that the attacker wants to replay is one whose usage
of and/or contention for a shared resource depends on a secret. We call such an instruction a
transmitter. Loads are obvious transmitters, as they use the shared cache hierarchy. However,
many instructions can be transmitters, including those that use functional units.
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B.3 THWARTING MRAS

B.3.1 Understanding the Types of MRAs

MRAs come in many forms. Table B.1 shows three orthogonal characteristics that can help us
understand these threats. The first one is the source of the squash. Recall that there are many
sources, namely various exceptions (e.g., page faults [280]), branch mispredictions, memory con-
sistency model violations, and interrupts [300]. With some sources, a single Squashing instruction
can trigger pipeline flushes repeatedly, while with others, a Squashing instruction can only flush
the pipeline a very limited number of times. Examples of the former are attacker-controlled page
faults and memory consistency model violations; examples of the latter are branch mispredictions.
The former can create more leakage.

Table B.1: Characteristics of microarchitectural replay attacks.

Characteristic Why It Matters
Source of Determines: (i) the number of pipeline
squash? flushes and (ii) where in the ROB the

flush occurs
Victim is transient? If yes, it can leak a wider variety of secrets
Victim is in a loop If yes, it is harder to defend:
accessing the same (i) leaks from multiple iterations add up
secret every iteration? (ii) multi-instance squashes

Moreover, some sources trigger the flush when the Squashing instruction is at the ROB head,
while others can do it at any position in the ROB. The former include exceptions, while the latter
include branchmispredictions andmemory consistency violations. The former create more leakage
because they typically squash and replay more Victims.
Figure B.1(a) shows an example where repeated exceptions on one or more instructions inst_i

can squash and replay a transmitter many times. This is one of the examples used in [280]. Fig-
ure B.1(b) shows an example where attacker-instigated mispredictions in multiple branches can
result in the repeated squash and replay of a transmitter. Different branch structures and different
orders of branch resolution result in different replay counts.
The second characteristic in Table B.1 is whether the Victim is transient. Transient instructions

are speculatively-executed dynamic instructions that will not commit. MRAs can target both tran-
sient and non-transient instructions. Transient Victims are more concerning: since the programmer
and compiler do not expect their execution, they can leak a wider variety of secrets.

229



Figure B.1(d) shows an example where anMRA can attack a transient instruction through branch
misprediction. The transmitter should never execute, but the attacker trains the branch predictor so
that it does. Figure B.1(c) shows a related example. The transmitter should not execute using the
secret, but the attacker trains the branch predictor so that it does.
The third characteristic in Table B.1 is whether the Victim is in a loop accessing the same secret

in every iteration. If it is, MRAs are more effective for two reasons. First, the attacker has more
opportunities to force the re-execution of the transmitter and leak the secret. Second, since the loop
is dynamically unrolled in the ROB during execution, the ROB may contain multiple instances of
the transmitter, already leaking the secret multiple times. Only when a squash occurs will any
MRA defense engage. We call a squash that squashes multiple transmitter instances leaking the
same secret in an unrolled loop a multi-instance squash.
Figures B.1(e) and (f) are like (c) and (d), but with the transmitter in a loop. In these cases, the

attacker can create more leaks of the transmitter by training the branch predictor so these branches
mispredict in every iteration. In the worst case, the branch in the first iteration resolves after 𝐾
loop iterations are loaded into the ROB and have executed. By the time the multi-instance squash
occurs, 𝑥 has been leaked as many as 𝐾 times. Only then is the MRA defense engaged.
Figure B.1(g) is like (f) except that the transmitter leaks a different secret every iteration. In this

case, it is easier to minimize the leakage.

B.3.2 Our Approach to Thwarting MRAs

To see how to thwart MRAs, consider Figure B.2(a), where a Squashing instruction 𝑆 causes
the squash of all the younger instructions in the ROB (Victims 𝑉0 ... 𝑉𝑛). The idea is to detect
this event and record all the Victim instructions. Then, as the Victim instructions are re-inserted
into the ROB, precede each of them with a fence. We want to prevent the re-execution of each
𝑉 𝑖 until 𝑉 𝑖 cannot be squashed anymore. In this way, the attacker cannot observe the side effects
of 𝑉 𝑖 more than once. The point when 𝑉 𝑖 cannot be squashed anymore is (i) when 𝑉 𝑖 is at the
head of the ROB, or (ii) when no older instruction than 𝑉 𝑖 in the ROB or any other event (e.g., a
memory consistency violation) can squash 𝑉 𝑖. This point has been called the Visibility Point (VP)
of 𝑉 𝑖 [118].
For highest performance, the type of fence used should be one that only prevents the execution of

the 𝑉 𝑖 instruction, where 𝑉 𝑖 can be any type of transmitter instruction. Further, when 𝑉 𝑖 reaches
its VP, the fence should be automatically disabled by the hardware, so that 𝑉 𝑖 can execute.
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Figure B.2: Reorder Buffer (ROB) and Squashed Buffer (SB).

In this approach, there are two main decisions to make: (i) on a squash, how to record the Victim
instructions? and (ii) for how long to keep this information? As a straw-man, consider a squash
triggered by an exception in inst_1 of Figure B.1(a). Before the squash, several dynamic instruc-
tions V younger than inst_1 may have already partially executed speculatively. As the program
re-starts after the squash, the processor will re-execute these same V instructions, in the exact same
order. Hence, our defense can be as follows. When the squash occurs, we record the V dynamic
instructions in a list, in program order; then, as each 𝑉 𝑖 in V is about to re-execute, we precede it
with a fence. When 𝑉 𝑖 reaches its VP, we remove 𝑉 𝑖 from the list. Once the list becomes empty,
we can resume normal, fence-free execution.
In reality, most squashes aremore complicated, especiallywhenwe have branches (FigureB.1(b))

or execute transient instructions (Figure B.1(d)). In these cases, program re-start may not result
in the re-execution of all the recorded Victims, or perhaps not in the same order as the first time.
Moreover, when we have loops such as in Figure B.1(e), the list of Victims of a squash may include
multiple dynamic instances of the same static instruction—each from a different loop iteration—
possibly leaking the same secret. Consequently, we will need more elaborate designs.
Finally, no amount of fencing can prevent the repeated re-execution of the Squashing instruction

when such instruction is squashed during its execution. An example is the replay handle in Skar-
latos et al. [280], which is forced to suffer repeated page faults. Hence, we suggest handling an
attack on these Squashing instructions themselves differently. Specifically, the hardware should
not allow a dynamic instruction to trigger more than a very small number of repeated pipeline
flushes before raising an attack alarm.

231



B.4 THREAT MODEL

We consider supervisor- and user-level attackers. In both cases, we assume the attacker can mon-
itor a microarchitectural side channel (e.g., those in Section 2.2). This is easily realized when the at-
tacker has supervisor-level privileges, as in the original MRA paper for the SGX setting [280]. It is
also possible, subject to OS scheduler assumptions, when the attacker runs unprivileged code [301].
In addition, we assume that the attacker can trigger squashes in the victim program to perform
MRAs. Which squashes are possible depends on the attacker. In the supervisor-level setting, the
attacker can trigger squashes due to exceptions such as page faults, or due to branch mispredic-
tions by priming the branch predictor state. In the user-level setting, the attacker has more limited
capabilities. For example, it may be able to trigger branch mispredictions by priming the branch
predictor state [18] but cannot cause exceptions.

B.5 PROPOSED DEFENSE SCHEMES

B.5.1 Outline of the Schemes

A highly secure defense against MRAs would keep a fine-grain record of all the dynamic in-
structions that were squashed. When one of these instructions would later attempt to re-execute,
the hardware would fence it and, when it reached the VP, remove it from the record. In reality,
such a scheme is not practical due to the potentially large storage requirements and the difficulty
of identifying the same dynamic instruction. Hence, Jamais Vu proposes three classes of schemes
that discard this state early. The schemes differ on when and how they discard the state.
A scheme called Clear-on-Retire discards any Victim information as soon as the program makes

forward progress—i.e., when the Squashing instruction reaches its VP (and hence will retire). A
scheme called Epoch discards the state when the current “execution locality” or epoch terminates,
and execution moves to another one. Finally, a scheme called Counter keeps the state forever, but
it compresses it so that all dynamic instances of the same static instruction keep their state merged.
Each of these policies to discard or compress state creates a different attack surface.

B.5.2 Clear-on-Retire Scheme

The rationale for the simpleClear-on-Retire scheme is that anMRA leaks information by stalling
a program’s forward progress and repeatedly re-executing the same set of instructions.
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Hence, when an MRA defense manages to force forward progress, it is appropriate to discard
the record of Victim instructions. Therefore, Clear-on-Retire clears the Victim state when the
Squashing instruction reaches its VP.
Clear-on-Retire stores information about the Victim instructions in a buffer associated with the

ROB called the Squashed Buffer (SB). Figure B.2(b) shows a conceptual view of the SB. It is
composed of a PC Buffer and an identifier register (ID). The PC Buffer contains the set of program
counters (PCs) of the Victim instructions. Since a squash may discard multiple iterations of a loop
in the ROB, the SB may contain the same PC multiple times. The ID register contains information
that identifies the Squashing instruction—i.e., the one that caused the squash. Such information
includes the PC of the instruction and its position in the ROB.
Multiple instructions in the ROB may cause squashes, in any order. For example, in Fig-

ure B.1(b), the branch in Line 3 may cause a squash first, and then the branch in Line 1 may
cause a squash. At every squash, the Victims’ PCs are added to the PC Buffer. However, ID is
only updated if the Squashing instruction is older than the one currently in ID. This is because the
older instruction will retire first and hence its retirement is needed to make forward progress.
The Clear-on-Retire algorithm works as follows. On a squash, the PCs of the Victims are added

to the PC Buffer, and ID is updated if necessary. When trying to insert an instruction 𝐼 in the ROB,
if 𝐼 is in the PC Buffer, a fence is placed before 𝐼. When the instruction in ID reaches its VP,
since the program is making forward progress, the SB is cleared and all the fences introduced by
Clear-on-Retire are nullified.
To understand why ID needs to store both the Squashing instruction’s PC and its ROB index,

note that there are two types of Squashing instructions. One type, such as mispredicted branches,
remain in the ROB after they trigger a squash; the other type, such as instructions suffering an
exception or loads suffering a memory consistency violation, are removed from the ROB after
they trigger a squash. For the first type, Clear-on-Retire does not use the PC field in ID; it only
uses the ROB index in ID to determine the relative age of any two Squashing instructions. For the
second type, since the instruction is removed from the ROB, the ROB index in ID is meaningless.
Hence,Clear-on-Retire uses the PC in ID to identify the Squashing instruction when it is re-inserted
into the ROB. At that point, Clear-on-Retire saves into ID the instruction’s new ROB index.
The first row of Table B.2 describes Clear-on-Retire. The scheme is simple and has the most

inexpensive hardware. The SB can be implemented as a simple Bloom filter (Section B.6.1).
One shortcoming of Clear-on-Retire is that it has some unfavorable security scenarios. Specif-

ically, the attacker could choose to make slow forward progress toward the transmitter 𝐼, forcing
every single instruction encountered to be a Squashing one.
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In practice, this scenario may be hard to set up since, for maximum effectiveness, the squashes
have to occur in strict order, from older to younger predecessor of 𝐼. Indeed, if a Squashing in-
struction 𝑆1 squashes 𝐼, and 𝐼 is then re-inserted into the ROB with a fence, a second Squashing
instruction 𝑆2 older than 𝑆1 will not squash 𝐼’s execution again. The reason is that 𝐼 is fenced and
has not yet executed.

Table B.2: Proposed defense schemes against microarchitectural replay attacks.

Scheme Removal Policy Rationale Pros/Cons

Clear-on-Retire
When the Squashing
instruction reaches
its visibility point (VP)

The program makes
forward progress
when the Squashing
instruction reaches its VP

+ Simple scheme
+ Most inexpensive hardware
- Some unfavorable
security scenarios

Epoch When an epoch
completes

An epoch captures
an execution locality

+ Inexpensive hardware
+ High security if epoch
chosen well
- Need compiler support

Counter
No removal,
but information
is compacted

Keeping the difference
between squashes and
retirements low minimizes
leakage beyond natural
program leakage

+ Conceptually simple
- Intrusive hardware
- May require OS changes
- Some pathological patterns

B.5.3 Epoch Scheme

The rationale for the Epoch scheme is that an MRA attacks an “execution locality” of a program,
which has a certain combination of Victim instructions. Once program execution moves to another
locality, the re-execution (and squash) of some of the original Victims is not seen as dangerous.
Hence, it is appropriate to discard the record of Victim instructions from a locality when moving to
another locality. We refer to an execution locality as an Epoch. Possible epochs are a loop iteration,
a whole loop, or a subroutine.
LikeClear-on-Retire, Epoch uses an SB to store information about the Victim instructions. How-

ever, the design is a bit different. First, Epoch requires the hardware to find start-of-epochmarkers
as it inserts instructions into the ROB. We envision that such markers are added by the compiler.
Second, the SB needs one {ID, PC-Buffer} pair for each in-progress epoch. The ID now stores a
small-sized, monotonically-increasing epoch identifier; the PC Buffer stores the PCs of the Victims
squashed in that particular epoch.
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The Epoch algorithm works as follows. As instructions are inserted into the ROB, the hardware
records every start-of-epoch marker. On a squash, the Victim PCs are stored in different PC Buffers
depending on the epoch they belong to. The IDs of the PC Buffers are set to the corresponding
epoch IDs. Note that a given PC may be in multiple PC Buffers and even multiple times in the
same PC Buffer. Then, when trying to insert an instruction 𝐼 in the ROB, if 𝐼 is in the PC Buffer
of the current epoch, 𝐼 is fenced. Finally, when the first instruction of an epoch reaches its VP, the
hardware clears the {ID, PC-Buffer} of any older epoch.
When a program re-starts after a squash, the first instruction re-enters the ROB with the same

epoch ID as that of the oldest squashed instruction. For example, suppose that instruction I of epoch
i suffers a page fault while younger instructions from epochs i+1 and i+2 are also in the ROB. The
hardware flushes I and all subsequent instructions. After the page fault is repaired, I re-enters the
pipeline as belonging to epoch i, not epoch i+3. Effectively, Epoch resets the epoch ID to the point
of the squash.
Epoch protects the scenario where, after the squash, the re-execution exercises the same set of

epochs that were executed speculatively before the squash and left Victim instructions in the PC
Buffers—although, perhaps, the re-execution executes different instructions than before in such
epochs. However, Epoch does not target the case when, after the squash, the re-execution exercises
a different set of epochs: e.g., when, because of a branch misprediction, a subroutine is now called
that was not called before, or a loop that was initially executed is now not executed anymore.
In these cases, we consider that the re-execution has moved to different localities and, therefore,
Epoch does not need to match the new instructions with the older Victims.
The second row of Table B.2 describes Epoch. The scheme is also simple and has inexpensive

hardware. It can also implement the PC Buffers as Bloom filters. Epoch has high security if epochs
are chosen appropriately, as the Victim information remains for the whole duration of the epoch.
A drawback of Epoch is that it needs compiler support.
An epoch can be long, in which case its PC Buffer may contain too many PCs to operate effi-

ciently. Hence, our preferred implementation of this scheme is a variation of Epoch called Epoch-
Rem that admits PC removal. Specifically, when a Victim from an epoch reaches its VP, the hard-
ware removes its PC from the corresponding PC Buffer. This support reduces the pressure on the
PC Buffer. This functionality is supported by implementing the PC Buffers as counting Bloom
filters (Section B.6.2).
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B.5.4 Counter Scheme

The Counter scheme never discards information about Victim squashes. However, to be imple-
mentable, the scheme merges the squash information from all the dynamic instances of the same
static instruction into a single variable. Specifically, Counter records, for any given static instruc-
tion, the difference between the number of times it has been squashed and the number of times it
has retired. Counter’s goal is to keep such difference small. The rationale is that, if both counts are
similar, an MRA is unlikely to exfiltrate much more information than what the program naturally
leaks.
While Counter can be implemented like the two previous schemes, a more intuitive implemen-

tation associates Victim information with each static instruction. A simple design adds a Squashed
bit to each static instruction 𝐼. When 𝐼 gets squashed, its Squashed bit is set. From then on, an
attempt to insert 𝐼 in the ROB causes a fence to be placed before 𝐼. When 𝐼 reaches its VP, the bit
is reset. After that, a future invocation of 𝐼 is allowed to execute with no fence.
In reality, multiple dynamic instances of the same static instructionmay be in the ROB at the same

time and get squashed together. Hence, we use a Squashed Counter per static instruction rather than
a bit. The algorithm works as follows. Every time that dynamic instances of the instruction get
squashed, the counter increases by the number of squashed instances; every time that an instance
reaches its VP, the counter is decremented by one. The counter does not go below zero. Finally,
when an instruction is inserted in the ROB, if its counter is not zero, the hardware fences it. This
is the Counter scheme that we propose.
To reduce the number of stalls, a variation of this scheme allows a Victim to execute without a

fence as long as its counter is lower than a threshold.
The third row of Table B.2 describes Counter. The scheme is conceptually simple. However,

it requires somewhat intrusive hardware. One possible design requires counters that are stored in
memory and get cached on demand into a special cache next to the L1 (Section B.6.3). This counter
cache or the memory needs to be updated every time a counter changes. In addition, the OS needs
changes to allocate and manage pages of counters for the instructions.
Counter has some pathological patterns. Specifically, an attacker may be able to repeatedly

squash an instruction by interleaving the squashes with retirements of the same static instruction.
In this case, one access leaks a secret before being squashed, while the other access is benign,
retires, and decreases the counter. This pattern is shown in Figure B.1(e). In every iteration, the
branch predictor incorrectly predicts the condition to be true, 𝑥 is set to secret, and the transmitter
leaks 𝑥. The execution is immediately squashed, the else code executes, and the transmitter retires.
This process is repeated in every iteration, causing the counter to toggle between one and zero.
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B.5.5 Analysis of the Security of the Schemes

To assess the relative security of the schemes, we compare their worst-case leakage for each of
the code snippets in Figure B.1. While the snippets in Figure B.1 only show some of the possi-
ble patterns, they cover a broad spectrum of cases. Indeed, they show examples of transmitters in
straight-line code and in loops; replays due to exceptions (Figure B.1(a)) and branch mispredic-
tions; transmitters executed transiently (e.g., Figure B.1(d)) and non-transiently; and transmitters
with iteration-independent and iteration-dependent secrets.
A summary of the analysis is shown in Table B.3. We measure leakage as the number of execu-

tions of the transmitter for a given secret. We report Transient Leakage (TL) when the transmitter
is a transient instruction and Non-Transient Leakage (NTL) when it is not. For the Epoch scheme,
we show the leakage for one design that uses iterations as epochs (Iter) and for one that uses loops
as epochs (Loop). For each of these two designs, we consider an implementation without removal
of Victim PCs from the PC Buffers when they reach their VP (NR) and with removal of them (R).
In Figure B.1(a), since the transmitter should commit, the NTL is one. The TL is found as

follows. In Clear-on-Retire, the attacker could make each instruction older than the transmitter a
Squashing one. In the very worst case, the squashes occur in program order, and the timing is such
that the transmitter is squashed as many times as the ROB size minus one. Hence TL is ROB size
minus 1. While this is a large number, it is smaller than the leakage in the original MicroScope
attack [280], where TL is infinite because one instruction can cause any number of squashes. In all
Epoch designs, the transmitter is squashed only once. Hence, TL is 1. Counter sets the transmitter’s
counter to 1 on the first squash; no other speculative re-execution is allowed. Hence, TL is 1.
Figure B.1(b) is conceptually like (a). The NTL in all schemes is 1. The TL of Counter and

Epoch is 1. In Clear-on-Retire, in the worst-case where all the branches are mispredicted and
resolve in program order, the TL is equal to the number of branches that fit in the ROB minus one
slot (for the transmitter).
Figures B.1(c) and (d) are very simple examples. NTL is 0 (since in Figure B.1(c) 𝑥 is never set

to the secret in a non-speculative execution) and TL is 1 for all schemes.
In Figure B.1(e), NTL is zero. However, the attacker may cause the branch to be mispredicted

in every iteration. To assess the worst-case TL in Clear-on-Retire, assume that, as the 𝑁-iteration
loop dynamically unrolls in the ROB, 𝐾 iterations fit in the ROB. In this case, the worst-case is that
each iteration (beyond the first 𝐾 − 1 ones) is squashed 𝐾 times. Hence, TL in Clear-on-Retire is
𝐾 ∗𝑁. In Epoch with iteration, since each epoch allows one squash, the TL is 𝑁 (with and without
PC removal). In Epoch with loop without removal, in the worst case, the initial 𝐾 iterations are in
the ROB when the squash occurs, and we have a multi-instance squash (Section B.3.1).
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Hence, the TL is 𝐾. In Epoch with loop with removal, since every retirement of the transmitter
removes the transmitter PC from the SB, TL is𝑁. Finally, in Counter, since every iteration triggers
a squash and then a retirement, TL is 𝑁.
Figure B.1(f) is like Figure B.1(e), except that the transmit instruction never retires for any value

of x. As a consequence, Epochwith loop with removal does not remove it from the SB, andCounter
does not decrease the counter. Hence, their TL is 𝐾.
Finally, Figure B.1(g) is like B.1(f) except that each iteration accesses a different secret. The

NTL is zero. The TL for Clear-on-Retire is 𝐾 because of the dynamic unrolling of iterations in the
ROB. For the other schemes, TL is 1 in the worst case.
Overall, for the examples shown in Table B.3, Epoch at the right granularity (i.e., loop level)

without removal has the lowest leakage. With removal, the scheme is similar toCounter, and better
than Epoch with iteration. Clear-on-Retire has the highest worse-case leakage. Further analysis
with more code patterns is part of our future work, and will provide more insights.

Table B.3: Worst-case leakage count in the proposed defense schemes for some of the examples in
Figure B.1. For a loop, 𝑁 is the number of iterations and, as the loop dynamically unrolls in the
ROB, 𝐾 is the number of iterations that fit in the ROB.

Case Non- Transient Leakage (TL)
Transient Clear-on Epoch Cntr
Leakage -Retire Iter Loop
(NTL) NR R NR R

(a) 1 ROB-1 1 1
(b) 1 BR𝑅𝑂𝐵-1 1 1

(c),(d) 0 1 1 1 1 1 1
(e) 0 K*N N N K N N
(f) 0 K*N N N K K K
(g) 0 K 1 1 1 1 1

B.5.6 A Statistical Model for Security Analysis

This subsection analyzes the implications of the leakage bounds in Table B.3 on the security of
a system. We consider the MRA prototyped by MicroScope [280], where a victim program per-
forms two multiplications or two divisions based on a test on a secret value. The attacker forces
the victim to continuously replay the operations, while a monitor thread keeps performing divi-
sion operations, and recording what fraction of the divisions take longer than a certain threshold
latency. The authors found that, if the victim is performing divisions, the monitor sees 64 divisions
with over-the-threshold latency in 10000 samples; if the victim is performing multiplications, the
monitor sees 4 divisions with over-the-threshold latency in 10000 samples.
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Based on this prototype, wemodel anMRA environment as follows. The attacker observes𝑋 op-
erations with over-the-threshold latency in𝑁 samples. 𝑋 follows a binomial distribution. When the
secret is 0, the probability of observing an over-the-threshold operation is 𝑃0, thus 𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑃0).
When the secret is 1, the probability is 𝑃1, thus𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑃1). Based on theMicroScope prototype,
we use 𝑃0 = 4/10000 and 𝑃1 = 64/10000.
During an attack, the attacker can have two hypotheses:

1. 𝐻0: the secret is 0, i.e., 𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑃0).

2. 𝐻1: the secret is 1, i.e., 𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑃1).

To test which one of 𝐻0 and 𝐻1 to accept, the attacker runs the Uniformly Most Powerful (UMP)
test [302] with a single cut-off 𝐶. If the attacker measures 𝑋/𝑁 < 𝐶, she accepts 𝐻0 and predicts
that the secret is 0; if the attacker measures 𝑋/𝑁 > 𝐶, she accepts 𝐻1 and predicts that the secret
is 1. There are four possible outcomes:

Table B.4: The probability of each test outcome.

Truth
Prediction 𝑠𝑒𝑐𝑟𝑒𝑡 = 0

𝑠𝑒𝑐𝑟𝑒𝑡 = 0 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0) = ∑
𝑥/𝑁<𝐶

(𝑁𝑥)𝑃
𝑥
0 (1 − 𝑃0)𝑁−𝑥

𝑠𝑒𝑐𝑟𝑒𝑡 = 1 𝑃(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1) = ∑
𝑥/𝑁<𝐶

(𝑁𝑥)𝑃
𝑥
1 (1 − 𝑃1)𝑁−𝑥

Truth
Prediction 𝑠𝑒𝑐𝑟𝑒𝑡 = 1

𝑠𝑒𝑐𝑟𝑒𝑡 = 0 𝑃(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0) = ∑
𝑥/𝑁>𝐶

(𝑁𝑥)𝑃
𝑥
0 (1 − 𝑃0)𝑁−𝑥

𝑠𝑒𝑐𝑟𝑒𝑡 = 1 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1) = ∑
𝑥/𝑁>𝐶

(𝑁𝑥)𝑃
𝑥
1 (1 − 𝑃1)𝑁−𝑥

• True secret 𝑠 is 0:

1. The attacker correctly predicts 0 with a probability
𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0).

2. The attacker incorrectly predicts 1 with a probability
𝑃(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0).

• True secret 𝑠 is 1:

3. The attacker correctly predicts 1 with a probability
𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1).
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4. The attacker incorrectly predicts 0 with a probability
𝑃(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1).

Among the four possible outcomes, the first and third cases result in a correct prediction, while
the second and fourth cases result in an incorrect prediction. Table B.4 shows the probability of
each outcome.
To determine an optimal cut-off 𝐶, we calculate the likelihood ratio and require it to be 1:

Likelihood ratio = 𝐿(𝐻0)
𝐿(𝐻1)

=
(𝑁
𝐶
)𝑃𝐶0 (1 − 𝑃0)𝑁−𝐶

(𝑁
𝐶
)𝑃𝐶1 (1 − 𝑃1)𝑁−𝐶

= 1

After canceling the common parts of the numerator and denominator:

[𝑃0(1 − 𝑃1)
𝑃1(1 − 𝑃0)

]
𝐶
[(1 − 𝑃0)
(1 − 𝑃1)

]
𝑁
= 1

then applying 𝑙𝑛 to both sides:

𝐶 𝑙𝑛 [𝑃0(1 − 𝑃1)
𝑃1(1 − 𝑃0)

] + 𝑁 𝑙𝑛 [(1 − 𝑃0)
(1 − 𝑃1)

] = 0

finally:

𝐶 = −
𝑙𝑛 [ (1−𝑃0)

(1−𝑃1)
]

𝑙𝑛 [𝑃0(1−𝑃1)
𝑃1(1−𝑃0)

]
𝑁

Using the values of 𝑃0 = 4/10000 and 𝑃1 = 64/10000 from the MicroScope experiment, we obtain
𝐶 = 21.67𝑁/10000. This is an optimal choice for the cut-off.
If the attacker wants to exfiltrate the secret bit with more than 80% success rate, each of the

probabilities of correct outcomes, namely 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0) and 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1), need to be
greater than 80%. By solving the equations of 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 0) > 0.8 and 𝑃(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑠 = 1) > 0.8
in Table B.4 for 𝐶 = 21.67𝑁/10000, we find that 𝑁 needs to be 𝑁 >= 251. This means that the
attacker needs at least 251 replays to extract a single bit with 80% success rate. If the attacker
wants to exfiltrate an entire byte with 80% success rate, then she needs 8√80% = 97.2% success
rate on extracting every single bit. In our case, this means that she requires at least 1107 replays for
each bit extraction and 8856 replays in total. The longer the secret is, the more the replays required
are.
These replay counts are higher than the very worst leakage counts of the Jamais Vu schemes in

Table B.3. It is true that, in the cases of loops (Rows (e) and (f) in the table), the number of iterations
𝑁 of the loop may be large. However, these leakage counts require that all the loop iterations read
from the same location, which is very rare given loop-invariant code-motion compiler optimiza-
tions. Furthermore, the values of aforementioned probabilities 𝑃0 and 𝑃1 from MicroScope [280]
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were obtained by re-executing the same set of instructions with the same replay handle. Jamais
Vu, instead, forces the attacker to continuously change replay handle. Hence, the attack’s success
rate will be even smaller.
Overall, from this estimation, we conclude that the leakage bounds provided by our proposed

Jamais Vu schemes make the schemes reasonably secure. Without Jamais Vu, the attacker can
extract a secret that has an arbitrary length with 100% success rate [280].

B.6 MICROARCHITECTURAL DESIGN

B.6.1 Implementing Clear-on-Retire

The PC Buffer in the SB needs to support three operations. First, on a squash, the PCs of all
the Victims are inserted in the PC Buffer. Second, before an instruction is inserted in the ROB, the
PC Buffer is queried to see if it contains the instruction’s PC. Third, when the instruction in the ID
reaches its VP, the PC Buffer is cleared.
These operations are easily supported with a hardware Bloom filter [303]. Figure B.3 shows the

filter’s structure. It is an array of 𝑀 entries, each with a single bit. To insert an item in the filter
(BF), the instruction’s PC is hashed with 𝑛 hash functions (𝐻𝑖) and 𝑛 bits get set: 𝐵𝐹[𝐻1], 𝐵𝐹[𝐻2],
... 𝐵𝐹[𝐻𝑛]. The filter can be implemented as an 𝑛-port direct-mapped cache of𝑀 1-bit entries.

0 1 0 1 … 1 0 0

PC

1 bit

M

H1 H2 Hn

PC Buffer
ID

Figure B.3: SB with a PC Buffer organized as a Bloom filter.

A Bloom filter can have false positives but no false negatives. A false positive occurs when a
PC is not in the PC Buffer but it is deemed to be there due to a conflict. This situation is safe, as it
means that Clear-on-Retire will end up putting a fence before an instruction that does not need it.
In practice, if we size the filter appropriately, we do not see many false positives when running

benign programs. Specifically, as we will see in Section B.9.3, for a 192-entry ROB, a filter with
1232 bits and 7 hash functions has less than 0.5% false positives.
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B.6.2 Implementing Epoch

The SB for Epoch is like the one for Clear-on-Retirewith two differences. First, there are multi-
ple {ID, PC-Buffer} pairs—one for each in-progress epoch. Second, inEpoch-Rem, which supports
the removal of individual PCs from a PC Buffer, each PC Buffer is a counting Bloom filter [304].
Figure B.4 shows the SB with multiple counting Bloom filters. The latter are like plain filters

except that each entry has k bits. To insert an item in a filter, the 𝑛 entries selected by the hashes
are incremented by one—i.e., 𝐵𝐹[𝐻1]++, 𝐵𝐹[𝐻2]++, ... 𝐵𝐹[𝐻𝑛]++. To remove the item, the same
entries are decremented by one. An 𝑛-port direct-mapped cache of𝑀 k-bit entries is used.
A counting Bloom filter can suffer false positives which, in our case, are harmless. In addition,

it can also suffer false negatives. A false negative occurs when a Victim should be in the PC
Buffer but it is deemed not to. In Jamais Vu, they are caused in two ways. The first one is when
a non-Victim instruction 𝑁𝑉 to be inserted in the ROB is incorrectly believed to be in the filter
because it conflicts with existing entries in the filter. Later, when 𝑁𝑉 reaches its VP, it causes the
removal of state from Victim instructions from the filter. After that, when Victims are checked for
membership, they are not found, triggering a false negative.
The second case is when the filter does not have enough bits per entry and, as a new Victim is

inserted, an entry saturates. In this case, information is lost. Later, Victim state that should be in
the filter will not be found in the filter.
False negatives reduce security because no fence is inserted where there should be one. However,

by appropriately sizing the Bloom filter relative to the ROB size, we can reduce the upper bound
of false negatives [305]. In practice, as we will see in Section B.9.3, because each counting Bloom
filter only contains Victims from one epoch, we find that only 0.02% and 0.006% of the accesses
are false negatives in Epoch with loops and iterations, respectively.
Note that an attacker cannot explicitly cause hashed addresses to bunch-up into a few Bloom-

filter entries and saturate them. The reason is that the attacker does not control how the Victim
instructions following a squash scatter into the Bloom filter.

Handling Epoch Overflow. The SB has a limited number of {ID, PC-Buffer} pairs. Therefore,
it is possible that, on a squash, the Victim instructions belong to more epochs than PC Buffers
exist in the SB. For this reason, Epoch augments the SB with one extra ID not associated with any
PC Buffer calledOverflowID. To understand how it works, recall that epoch IDs are monotonically
increasing. Hence, wemay find that Victims from a set of high-numbered epochs have no PCBuffer
to go. In this case, we store the ID of the highest-numbered epoch of any Victim in OverflowID.
From now on, when a new instruction is inserted in the ROB, if it belongs to an epoch whose ID:
(i) owns no PC Buffer and (ii) is no higher than the one in OverflowID, we place a fence before the
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instruction. The reason is that, since we have lost information about Victims in that epoch, we do
not know whether the instruction is a Victim. When the epoch whose ID is in OverflowID is fully
retired, OverflowID is cleared.
As an example, consider Figure B.5(a), which shows a ROB full of instructions. The figure

groups the instructions according to their epoch and labels the group with the epoch ID. Assume
that all of these instructions are squashed and that the SB only has four {ID, PC-Buffer} pairs.
Figure B.5(b) shows the resulting assignment of epochs to {ID, PC-Buffer} pairs. Epochs 14 and 15
overflow and, therefore, OverflowID is set to 15. Any future insertion in the ROB of an instruction
from epochs 14 and 15 will be preceded by a fence. Eventually, some {ID, PC-Buffer} pairs will
free-up andmay be used by newer epochs such as Epoch 16. However, all instructions from Epochs
14 and 15 will always be fenced.

PC

k bits

M

H1 H2 Hn

PC Buffer
ID

01 00 01 … 00 01 00

Figure B.4: SB with multiple PC Buffers organized as counting Bloom filters.

15 14 13 12 11 10
ROB
Head

Epoch IDEpoch Boundary
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Squashed Buffer
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OverflowID

12 11 1015

(b)

PC Buffer

ID

Figure B.5: Handling epoch overflow.
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B.6.3 Implementing Counter

To implement Counter, Jamais Vu stores the counters for all the instructions in data pages, and
the core has a small Counter Cache (CC) that keeps the recently-used counters close to the pipeline
for easy access. Since the most frequently-executed instructions are in loops, a small CC typically
captures the majority of the counters needed.
We propose a simple design where, for each page of code, there is an associated data page at a

fixed Virtual Address (VA) Offset that holds the counters of the instructions in the page of code.
Further, the VA offset between each instruction and its counter is fixed, to ease access. In effect, this
design increases the memory consumed by a program by the size of its instruction page working
set.
Figure B.6(a) shows a page of code and its page of counters at a fixed VA offset. When the

former is brought into physical memory, the latter is also brought in. The figure shows a memory
line with several instructions and the associated line with their counters. We envision each counter
to be 4 bits.
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Figure B.6: Allocating and caching instruction counters.

Figure B.6(b) shows the action taken when an instruction is about to be inserted in the ROB.
The VA of the instruction is sent to the CC, which is a small, set-associative cache that contains
the most recently-used lines of counters. Due to good instruction locality, the CC hits most of the
time. On a hit, the corresponding counter is sent to the pipeline to be examined.
If, instead, the CC misses, a CounterPending signal is sent to the pipeline. To avoid adding

new side channels, no other action is taken until the corresponding instruction reaches its Visibility
Point (VP). At that point, the Offset will be added to the instruction’s VA to obtain the VA of the
counter, and this address will be sent to the TLB to obtain the Physical Address (PA) of the counter.
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After that, a request will be sent to the cache hierarchy to obtain the line of counters, store it in the
CC, and pass the counter to the pipeline.
The operations in the pipeline are as follows. If the counter is not zero or a CounterPending

signal is received, two actions are taken. First, a fence is inserted in the ROB before the instruc-
tion. Second, when the instruction reaches its VP, the counter is decremented and stored back in
the CC or, if a CounterPending signal was received, the request mentioned above is sent to the
cache hierarchy to obtain the counter. When the counter is returned, if it is not zero, the counter is
decremented. The counter is stored in the CC.
In our design, we want the CC to add no side channels. Hence, on a CC hit, the CC’s LRU bits

are not updated until the instruction reaches its VP. Further, on a CC miss, we delay the request to
the cache hierarchy for the counter until the instruction reaches its VP.

B.6.4 Handling Context Switches

To operate correctly, Jamais Vu performs the following actions at context switches. In Clear-on-
Retire and Epoch, the SB state is saved to and restored from memory as part of the context. This
enables the defense to remember the state when execution resumes. In Counter, the CC is flushed
to memory to leave no traces behind that could potentially lead to a side-channel exploitable by
the newly scheduled process. The new process loads the CC on demand. These operations can be
done safely by the trusted environment.

B.7 COMPILER PASS

Epoch includes a program analysis pass that places ”start-of-epoch” markers in the program.
The pass accepts as input a program in source code or binary. Source code is preferred, since it
contains more information and allows a better analysis.
We consider two designs: one that uses loops as epochs and one that uses loop iterations as

epochs. In the former, an epoch includes the instructions between the beginning and the end of
a loop, or between the end of a loop and the beginning of the next loop; in the latter, an epoch
includes the instructions between the beginning and the end of an iteration, or between the end of
the last iteration in a loop and the beginning of the first iteration in the next loop. In both Epoch
designs, procedure calls and returns are also epoch boundaries.
The analysis is intra-procedural and uses conventional control flow compiler techniques [306].

It searches for back edges in the control flow of each function, and from there identifies the natural
loops. Once back edges and loops are identified, the Epoch compiler inserts the epoch boundary
markers.
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To mark an x86 program, our analysis pass places a previously-ignored instruction prefix [271]
in front of every first instruction of an epoch. The processor ignores this prefix, and our simula-
tor recognizes that a new epoch starts. This approach changes the executable, but because current
processors ignore this prefix, the new executable runs on any x86 machine. The size of the exe-
cutable increases by only 1 byte for every static epoch. For epoch boundaries formed by procedure
calls and returns, the compiler does not need to mark anything. The simulator recognizes the x86
procedure call and return instructions and starts a new epoch.

B.8 EXPERIMENTAL SETUP

Architectures Modeled. We model the architecture shown in Table B.5 using cycle-level simu-
lations with gem5 [230]. The baseline architecture is called UNSAFE, because it has no protection
against MRAs. The defense schemes are: (i) Clear-on-Retire (COR), (ii) Epoch with iteration
(EPOCH-ITER), (iii) Epoch-Rem with iteration (EPOCH-ITER-REM), (iv) Epoch with loop (EPOCH-
LOOP), (v) Epoch-Rem with loop (EPOCH-LOOP-REM), and (vi) Counter (COUNTER).
From Table B.5, we can compute the sizes of the Jamais Vu hardware structures. Clear-on-

Retire uses 1 non-counting Bloom filter. The size is 1232 bits. Epoch uses 12 Bloom filters. For
Epoch-Rem, since the counting Bloom filters use 4 bits per entry, the total size is 12 times 4,928
bits, or slightly above 7KB. A Bloom filter has 14 read and 7 write ports. The Counter Cache
(CC) in Counter contains 128 entries, each with the counters of one I-cache line. Since the shortest
x86 instruction is 1 byte and a counter is 4 bits, each line in the CC is shifted 4 bits every byte,
compacting the line into 32B. Hence, the CC size is 4KB.
Application and Analysis Pass. We run SPEC17 [231] with the reference input size. Because
of simulation issues with gem5, we exclude 2 applications out of 23 from SPEC17. For each ap-
plication, we use SimPoint [232] methodology to generate up to 10 representative intervals that
accurately characterize the end-to-end performance. Each interval consists of 50 million instruc-
tions. We run gem5 on each interval with syscall emulation with 1M warm-up instructions.
Our program analysis pass is implemented on top of Radare2 [273], a state-of-the-art open-

source binary analysis tool. We extend Radare2 to perform epoch analysis on x86 binaries.

B.9 EVALUATION

B.9.1 Thwarting Proof-of-Concept (PoC) MRA

To demonstrate Jamais Vu’s ability to thwart MRAs, we implement a PoCMRA on gem5 similar
to the port contention attack in [280]. After testing a secret, the victim thread performs a division
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operation. The attacker picks 10 Squashing instructions that precede the test and the division. The
code is similar to Figure B.1(a). In UNSAFE, the attacker causes 5 squashes on each of the 10
Squashing instructions, for a total of 50 replays of the division operation. With Clear-on-Retire,
the number of replays decreases to 10, since each Squashing instruction can only cause a single
replay. With Epoch, there is a single replay because all the code belongs to a single epoch. With
Counter, there is a single replay because the division only commits once.

Table B.5: Parameters of the simulated architecture.

Parameter Value
Architecture 2.0GHz out-of-order x86 core
Core 8-issue, no SMT, 62 load queue entries, 32 store

queue entries, 192 ROB entries, L-TAGE branch
predictor, 4096 BTB entries, 16 RAS entries

L1-I Cache 32KB, 64B line, 4-way, 2 cycle Round Trip (RT)
latency, 1 port, 1 hardware prefetcher

L1-D Cache 64KB, 64B line, 8-way, 2 cycle RT latency, 3 Rd/Wr
ports, 1 hardware prefetcher

L2 Cache 2MB, 64B line, 16-way, 8 cycles RT latency
DRAM 50 ns RT latency after L2
Counter Cache 32 sets, 4-way, 2 cycle RT latency, 4b/counter
Bloom Filter 1232 entries, 7 hash functions. Non-counting:

1b/entry. Counting: 4b/entry
{ID, PC-Buffer} 12 pairs in Epoch; 1 pair in Clear-on-Retire

B.9.2 Execution Time

Jamais Vu proposes several schemes that offer different performance, security, and implemen-
tation complexity trade-offs. Figure B.7 shows the normalized execution time of SPEC17 applica-
tions on all schemes but Epoch without removals, which we consider later. Time is normalized to
UNSAFE.
Among all the schemes, COR has the lowest execution time overhead. It incurs only a geometric

mean overhead of 2.9% over UNSAFE. It is also the simplest but least secure design (Table B.3).
EPOCH-ITER-REM has the next lowest average execution overhead, namely 11.0%. This design is
also very simple and is more secure, especially as we will see that false negatives are very rare.
The next design, EPOCH-LOOP-REM, has higher average execution time overhead, namely 13.8%.
However, it has simple hardware and is one of the two most secure designs (Table B.3)—again,
given that, as we will see, false negatives are very rare. Finally, COUNTER has the highest average
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execution overhead, namely 23.1%. It is one of the two most secure schemes, but the implemen-
tation proposed is not as simple as the other schemes. From all these schemes, EPOCH-LOOP-REM
and perhaps COR appear to be the most appealing.
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Figure B.7: Execution time for all the schemes exceptEpochwithout removals. Time is normalized
to UNSAFE.

The schemes not shown in the figure, namely EPOCH-ITER and EPOCH-LOOP are not competitive.
They have an average execution overhead of 22.6% and 63.8%, respectively. These are substantial
increases over the schemes with removals, with modest gains in simplicity and security.

B.9.3 Sensitivity Study

Each Jamais Vu scheme has several architectural parameters that set its hardware requirements
and efficiency. Recall that COR uses a Bloom filter, while EPOCH-ITER-REM and EPOCH-LOOP-
REM use counting Bloom filters. To better understand the different Bloom filters, we first perform
a sensitivity study of their parameters. Then, we evaluate several Counter Cache organizations for
COUNTER.
Number of Bloom Filter Entries. Figure B.8 shows the geometric mean of the normalized exe-
cution time and the false positive rates (FP) on SPEC17, when varying the size of the Bloom filter.
We consider several sizes, which we measure in number of entries. Recall that each entry is 1 bit
for COR and 4 bits for the other schemes. We pick each of these number of entries by first selecting
a projected element count (i.e., the number of items that we expect to be inserted in the Bloom fil-
ter, as shown in parenthesis in the figure) and running an optimization pass [307] for a target false
positive probability of 0.01. From the figure, we see that a Bloom filter of 1232 entries strikes a
good balance between execution and area overhead, with a false positive rate of less than 0.5% for
all the schemes.
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Number of {ID, PC-Buffer} Pairs. Another design decision for EPOCH-ITER-REM and EPOCH-
LOOP-REM is how many {ID, PC-Buffer} pairs to have. If they are too few, overflow will be
common. Figure B.9 shows the average normalized execution time and the overflow rates on
SPEC17, when varying the number of {ID, PC-Buffer} pairs. The overflow rate is the fraction
of insertions into PC Buffers that overflow. From the figure, we see that, as the number of {ID,
PC-Buffer} pairs decreases, the execution time and overflow rates increase. Supporting 12 {ID,
PC-Buffer} pairs is a good design point.
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Figure B.8: Average normalized execution time and false positive rate (FP) when varying the
number of entries per Bloom filter. The numbers in parenthesis are the maximum number of items
to be inserted in the Bloom filter to attain a target false positive probability of 0.01.
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Number of Bits Per Counting Bloom Filter Entry. The counting Bloom filters in EPOCH-ITER-
REM and EPOCH-LOOP-REM use a few bits per entry to keep the count.
Figure B.10 shows the average normalized execution time and the false negative rates (FN) on

SPEC17, when varying the number of bits per entry. We see from the figure that the number of bits
per entry has little impact on the performance. However, as the number of bits per entry decreases
beyond four, the false negative rate increases rapidly. For four bits per entry, the false negative rate
is an acceptable 0.02% for EPOCH-LOOP-REM and 0.006% for EPOCH-ITER-REM.
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Figure B.10: Average normalized execution time and false negative rate (FN) when varying the
number of bits per counting Bloom filter entry.

False negatives can be caused either by conflicts in the filter or by not having enough bits in an
entry. In the latter case, when the counter in the entry saturates, it cannot record further squashes
and information is lost. To estimate the relative impact of these two sources of false negatives,
we took our default Bloom filter of 1232 entries and four bits per entry, and artificially eliminated
conflicts. We did this by recording the inserted items in an ideal hash table that has no conflicts.
We found that the resulting false negative rates are 0.004% and 0.002% for EPOCH-LOOP-REM and
EPOCH-ITER-REM, respectively. These numbers are comparable to the false negative rates obtained
by taking the default Bloom filter and simply adding one extra bit per entry.
Counter Cache (CC) Geometry. Figure B.11 shows the CC hit rate as we vary the ways and sets
of the CC. We see that the CC hit rate increases with the number of entries, but that changing the
associativity of the CC from 4 to full does not help. Overall, our default configuration of 32 sets
and 4 ways performs well. It attains an average hit rate of 93.7%, while a larger cache or a fully-
associative one improves the hit rate only a little. A smaller cache hurts the hit rate substantially.
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Figure B.11: CC hit rate when varying the cache geometry.

B.10 RELATED WORK

There are some works related to mitigating MRAs.
Preventing Pipeline Squashes. The literature includes several solutions that can mitigate specific
instances ofMRAs. For example, page fault protection schemes [308, 309, 310, 311] can be used to
mitigate MRAs that rely on page faults to cause pipeline squashes. The goal of these countermea-
sures is to block controlled-channel attacks [312, 313] by terminating victim execution when an
OS-induced page fault is detected. The most recent of these defenses, Autarky [309], achieves this
through a hardware/software co-design that delegates paging decisions to the enclave. However,
attacks that rely on events other than page faults to trigger pipeline squashes (Section B.3.1) would
still overcome these point-mitigation strategies. In contrast, Jamais Vu is the first comprehensive
defense that addresses the root cause of MRAs, namely that instructions can be forced to execute
more than once.

Preventing Side Channel Leakage. Another strategy to mitigate MRAs is to prevent specula-
tive instructions from leaking data through side channels. For example, several works have pro-
posed to mitigate side channels by isolating or partitioning microarchitectural resources [44, 55,
61, 226, 276, 310, 314, 315, 316], thus preventing the attacker from accessing them during the vic-
tim process’ execution. These defenses prevent adversaries from leaking data through specific side
channels, which ultimately makes MRAs’s ability to denoise these channels less useful. In prac-
tice, however, no holistic solution exists that can block all side channels. Further, new adversarial
applications of MRAs may be discovered that go beyond denoising side-channel attacks.
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B.11 CONCLUSION

This appendix presented Jamais Vu, the first technique to thwart MRAs. Jamais Vu detects when
an instruction is squashed and, as it is re-inserted into the pipeline, places a fence before it. The
three main Jamais Vu designs areClear-on-Retire, Epoch, andCounter, which offer different trade-
offs between security, execution overhead, and implementation complexity. One design, called
Epoch-Loop-Rem, effectively mitigates MRAs, has an average execution time overhead of 13.8%
in benign executions, and only needs counting Bloom filters. An even simpler design, calledClear-
on-Retire, has an average execution time overhead of only 2.9%, although it is less secure.
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